论文部分内容阅读
使用机器学习中的随机森林(RF)回归算法构建小麦叶片SPAD值遥感反演模型。以2010—2013年江苏地区试验点稻茬小麦3个生育期(拔节、孕穗、开花)的叶片为材料,结合我国自主研发的环境减灾卫星HJ-1对研究区域进行同步监测,分析了各生育期叶片SPAD值与8种植被指数间的相关性;以0.01水平下显著相关的植被指数作为输入参数,使用RF回归算法构建了每个生育期的小麦SPAD反演算法模型,即RF-SPAD模型,以支持向量回归(SVR)和反向传播(BP)神经网络算法构建的SVR-SPAD模型和BP-SPA