论文部分内容阅读
针对医疗信息的复杂性及模糊不确定性,对信息化医疗数据进行综合分析,采用模糊C均值算法进行迭代运算,获得最终模糊聚类结果。在此基础上建立模糊神经网络T—S模型对聚类结果进行训练,达到自适应学习的目的。采用Matlab进行模拟仿真,实验结果表明该模型具有较强的泛化性、自适应学习能力,实际输出与预测输出误差较小,能持续优化临床路径,并快速为患者选择最优治疗方案。