论文部分内容阅读
设 a(t),g(t)和 K(t,u)分别是复超球面 S 和 S×S 上满足 Lipschitz 连续条件,且K(t,u)/{a(u)-b(u)}是 B×B 上的解析函数在 S 上的边界值,在 S 上有 a~2(t)±b~2(t)≠0,则方程a(t)f(t)+2/w ∫_S (K(t,u)f(u)du)/((1-t)~n)=g(t) (1)当且仅当 g(t)使函数(b(t)g(t))/(b(t)+a(t))+(b(t)-a(t))/(b(t)+a(t)) ∫_S (2K(t,