论文部分内容阅读
建立了相邻字符区域的高斯混合模型,用于区分字符与非字符.在此基础上,提出了一种从图像中提取多语种文本的方法.首先对输入图像进行二值化,并执行形态学闭运算,使二值图像中每个字符成为一个单独的连通成分.然后根据各连通成分重心的Voronoi区域,形成连通成分之间的邻接关系;最后在贝叶斯框架下,基于相邻字符区域的高斯混合模型计算相应的伪概率,以此为判据将每个连通成分标注为字符或非字符.利用所提出的文本提取方法,进行了复杂中英文文本的提取实验,获得大于97%的准确率和大于80%的召回率,证实了方法的有效性.