论文部分内容阅读
提出了一种基于支持向量回归的增量学习算法,该算法在增量学习中除了考虑原训练集中的支持向量(SVs)外,还考虑了非SVs与ε-带(ε-insensitive zone)的边界距离较近的样本,并将这些样本与新的训练集一起训练.试验结果表明,与传统的支持向量机增量学习算法相比,此算法提高了训练精度;与经典的SVR相比,此算法大大节约了训练时间,是一种行之有效的增量学习算法.