论文部分内容阅读
为满足电能质量扰动事件的在线分类需求,提出了一种基于HoeffdingTree的电能质量扰动在线分类方法。对电能质量在线扰动分类中的关键技术进行了研究,提出用小波变换和离散傅里叶变换相结合的判别方法检测电能质量扰动,该算法采用自适应滑动数据窗算法,能够根据扰动持续时间提取完整的扰动事件。以小波信号能量以及基波有效值构成特征向量.利用HoeffdingTree算法构建增量式分类训练模型。仿真结果表明,所提方法的准确度和效率均满足电能质量扰动事件在线检测和分类的要求。