论文部分内容阅读
提出了一种用于分类的模糊基函数(FBF)神经网络在线跟踪自学习算法,通过带有遗忘因子的样本均值和样本协方差矩阵,保存了原始样本所包含的类可能性分布信息,并在此基础上产生新增样本的目标输出用于训练FBF网络,以实现分类边界的在线跟踪;给出了带有遗忘因子的样本均值和样本协方差矩阵的递推算法,以克服传统方法需要保存大量以往训练样本带来的困难。所提出的方法用于旋转机械的故障识别,结果表明是可行的和有效的。