论文部分内容阅读
考虑Spark大数据平台内存计算框架在迭代计算的优势,提出Spark平台下KNN-ALS模型的推荐算法.针对矩阵分解算法只考虑隐含信息而忽视相似度信息的缺陷,将相似度信息加入评分预测中,并采用适合并行化的交替最小二乘法进行模型最优.在MovieLens数据集上的实验表明:该算法能够提高协同过滤推荐算法在大数据集下的处理效率,且加速比也达到并行处理的线性要求,相比其他方法有较好的精度.