论文部分内容阅读
Magnetohydrodynamic behaviors in a resistance spot weld nugget under different welding currents are investigated based on a multiphysics coupled numerical model, which incorporates phase change and variable electrical contact resis-tances at faying surface and electrode-workpiece contact surface. The patterns of the flow field and thermal field at the end of the welding phase under different welding currents are obtained. The evolutions of fluid flow and heat transfer during the whole welding process are also revealed systematically. The analysis results are also compared with a traditional electrothermal coupled model to obtain the quantitative effects of the magnetohydrodynamic behaviors on the resistance spot weld nugget formation.
Magnetohydrodynamic behaviors in a resistance spot weld nugget under different welding currents are based on a multiphysics coupled numerical model, which incorporates phase change and variable electrical contact resis- tances at faying surface and electrode-workpiece contact surface. The patterns of the flow field and thermal field at the end of the welding phase under different welding currents are obtained. The evolutions of fluid flow and heat transfer during the whole welding process are also revealed systematically. The analysis results are also compared with a traditional electrothermal coupled model to obtain the quantitative effects of the magnetohydrodynamic behaviors on the resistance spot weld nugget formation.