论文部分内容阅读
为提高分选的稳定性和准确率,提出一种多特征融合的基于粒子群算法优化的法平面型隶属度函数模糊支持向量机(PSO-NP-FSVM)煤矸石分选方法。介绍了X射线探测识别煤矸石技术的基本原理与工作流程。对采集到的X射线图像经中值滤波去噪预处理后,分别提取灰度特征下的灰度均值、灰度方差,以及基于灰度共生矩阵的纹理特征下的能量、相关性、对比度和熵共计6个特征向量,并对选择的特征进行融合。利用法平面型隶属度函数能有效剔除孤立样本的优点,结合粒子群算法对模糊支持向量机分类器模型的主要参数进行优化,提出经优化改进后的PSO