基于RBF神经网络间接求取运动学逆解的研究

来源 :机床与液压 | 被引量 : 0次 | 上传用户:huangxiaojuan
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
七自由度工业机器人的几何结构大多满足Pieper准则,所以针对七自由度的封闭解法具有很大的发展空间。提出了一种基于RBF神经网络间接求取运动学逆解的方法,将运动学方程转化成了优化控制问题。采用遗传算法与最佳柔顺性准则相结合的方法,为RBF神经网络算法提供了精确的样本;为了提高神经网络算法的收敛速度以及收敛精度,进行间接求取的方式,引入连杆三角形夹角的概念;为了验证结果的可靠性,以七自由度冗余机械臂为对象,开展了基于RBF神经网络算法间接求逆的优化实验,并对比传统的RBF神经网络求取运动学逆解算法,结果表明
其他文献
1资料与方法1.1一般资料2008年11月至2010年4月我院共收治了208例病毒性呼吸道感染患者,均表现为起病急,伴有不同程度的发热(体温≥37.5℃),咽干、咽痒、鼻塞、流涕、咳嗽、眼