车路协同路侧感知融合方法的研究

来源 :测控技术 | 被引量 : 0次 | 上传用户:lhl23
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着智能网联汽车技术和产业的不断发展,智能网联汽车逐渐成为人们交通出行的选择之一.但受智能网联汽车自身环境感知系统对特定道路交通场景信息处理的局限,无法实现在所有行驶工况下安全高效的运行,其需车路协同路侧感知技术的辅助方能更安全高效的运行.海量的车路协同感知数据是城市道路和高速公路车路协同、运行分析和科学管理的宝藏,理解和分析这些数据是车路协同路侧感知融合的关键.面对车路协同路侧多传感器的不同数据,如何高效准确地挖掘和提取雷达、视频在不同时间、不同空间维度的数据,实现对重点交通场景(如视野盲区、急转弯道、隧道、桥梁)和交通事件、环境、设施安全等的雷达、视频数据进行快速融合检测、识别与检索,通过蜂窝车联网C-V2X网络在一定时延范围内有效地将路侧感知融合结果数据发送给智能网联汽车,确保其安全高效的行驶,是面向智能网联汽车辅助驾驶的车路协同路侧感知融合的关键问题.基于智能网联汽车其自身环境感知能力,对道路智能基础设施感知网络中的多传感器融合方法进行研究分析,提出了基于误差方差的多传感器融合算法,与非智能道路相比,其效率更高,更加智能化,可有效解决道路交通运行环境中存在的常见问题,为人们提供更加安全、高效、优质的交通出行服务.
其他文献