论文部分内容阅读
The utilization of fiber reinforced thermoplastics (FRTP) is expected to fulfill lightweight demand in mass-produced aerospace products. Facing the unavoidable assembly of FRTP parts, fusion bonding methods such as resistance welding are promising compared with mechanical joint and adhesive bonding. In this paper, a procedure has been brought out to understand the relation-ship between processing conditions and performance of the FRTP welding joints. The adherends were continuous glass fiber reinforced polypropylene (GF/PP) laminates fabricated by hot-pressing method. The influences of time, current and pressure on the bending strength of the resis-tance welding joints were investigated. A processing window was drawn based on the optical obser-vation of welded surfaces. The quantitative relationship between process parameters and mechanical property of GF/PP welding joint was established by Response Surface Method (RSM) with high accuracy. It was found that bending strength of GF/PP welding joint was improved by 31%compared with hot-pressing benchmark.