论文部分内容阅读
针对大量物件分拣工作中单目视觉无法精确估计目标位姿从而无法完成随机堆叠工件分拣的问题,以点对特征为基础,提出了基于点云的目标识别和位姿估计算法的改进算法.模型训练阶段,使用改进的下采样方法,保留更多有区分性的点对,构建局部参考系作为补充特征;在线匹配阶段,以距离作为投票权重,并利用匹配点对的局部参考系相似度验证候选位姿;最后通过模型与场景的重叠率筛选未遮挡的多实例目标作为可抓取目标候选.结果表明:在方差为3%,5%倍模型尺寸的高斯噪声下,目标识别率分别可达97%,78%;所有试验的识别耗时均在1 s