论文部分内容阅读
针对复杂背景下黄瓜叶部病害分割精度不高的问题,提出了一种基于显著性检测的黄瓜叶部病害图像分割算法。首先利用超像素将黄瓜图像分块,获取黄瓜叶片的边缘,并提出了一种超像素间权重计算方法和显著种子选取方法;然后通过流形排序计算显著图,对得到的显著图进行阈值分割,得到二值图像;再将二值图像与原图像进行掩码运算,得到黄瓜病害叶片;最后利用超绿特征和数学形态学对病害叶片进行分割得到病斑。对常见的黄瓜病害(白粉病、褐斑病、霜霉病、炭疽病)图像进行测试,结果表明该算法与Otsu算法和k-means算法相比,有效解决了冗余