[!--temp.top--]

基于图像处理技术的小麦叶部病害识别研究

被引量 : 0次 | 上传用户:bueryuyu33
'; } ?>
【作 者】
'; foreach($pd_record as $writer){ $str .= ''.$writer. ' '; } $str = trim($str,',').'
'; } echo $str; ?>
【机 构】
'.$navinfor[author_org].'
'; } ?>
【出 处】
'.$navinfor[befrom].'
'; } ?>
【发表日期】
'.$navinfor[year].'年'.$navinfor[issue_num].'期
'; } ?>
【关键词】
'; foreach($pd_record as $keyboard){ $str .= ''.$keyboard. ' '; } $str = trim($str,',').'
'; } echo $str; ?>
【基金项目】
'.$navinfor[fund_info].'
'; } ?>
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
植物病害会导致农作物在产量和质量上都显著降低.为了快速准确的诊断识别小麦病害,及时采取防治措施,利用图像处理技术对小麦常见病害进行识别.以小麦病害纹理特征参数和颜色特征参数作为特征向量,采用基于径向基核函数的支持向量机对小麦白粉病、条锈病、叶锈病和秆锈病图像进行识别,整体识别准确率达95%.实验结果表明,所选取的特征参数对4种小麦叶部常见病害的识别是有效可行的,为小麦病害诊断提供了有效分析手段.
其他文献
[e:loop={"SELECT * FROM phome_ecms_lunwen WHERE id BETWEEN $js AND $ks ",0,24,0}]
'.$keyboard. ''; } $str = trim($str,',').'
'; } echo $str; ?>
[/e:loop]