强预测器相关论文
针对在智能用电环境下研究对象复杂且负荷随机性强,短期电力负荷预测算法精度差、计算时间长等问题,提出一种基于ELM-Adaboost神经网......
本文针对当前室内地磁定位技术存在地磁信号不稳定和地磁指纹不唯一所造成定位误差大等问题,提出一种基于集成学习与BP神经网络的......
为提高金融时间序列的预测精度,本文提出了基于MODWT、MCP变量选择方法和RELM_Adaboost的混合预测模型。该模型由三步构成:第一步,......
针对小波神经网络(wavelet neural network,WNN)难以选取合适小波基函数和确定隐含层节点数等问题,提出使用集成学习改进小波神经......
基于BP和Adaboost模型算法构建BP-Adaboost模型,通过对河南省10个地市的近60年降水数据进行2 ~4 a的年降水量预测.和单一BP算法预测......
短期电力负荷预测对于电力系统的安全调度和经济运行具有非常重要的意义,针对传统短期负荷预测方法具有误差大、计算复杂的问题,提......
针对传统税收预测模型精度较低的问题,提出一种将Adaboost算法和BP神经网络相结合进行税收预测的方法。该方法首先对历年税收数据......
期刊
针对传统BP神经网络容易陷入局部极小、预测精度低的问题,提出使用Adaboost算法和BP神经网络相结合的方法,提高网络预测精度和泛化能......
期刊