模糊C-均值(FCM)相关论文
针对绿色供应商数量增多带来巨大计算复杂性的问题,文章提出基于遗传启发式属性权搜索策略优化模糊C-均值(GW-FCM)与VIKOR相结合的......
针对模糊C-均值(FCM)聚类算法对初始聚类中心选择敏感,易陷入局部最优的问题,提出一种量子粒子群优化改进的模糊C均值聚类算法。该算法......
为构建基于眼底图像的糖尿病视网膜病变(糖网)自动筛查系统,提出一种基于改进的快速FCM(IFFCM)及SVM的糖网白色病灶自动检测算法。......
模糊C-均值(FCM)聚类算法是一种基于像素分类的图像分割方法,在分割的过程中,仅仅利用了像素点的灰度信息,但在灰度密度丰富变化和......
模糊C均值算法(FCM)是一种用于聚类的最流行的技术。不过,传统的FCM使用欧氏距离作为数据集的相似准则,从而导致数据集的划分有相等的......
混合像元的存在是影响遥感图像分类精度的主要原因,模糊分类是进行混合像元分解的重要方法,其效果的好坏取决于各像元分类后对各类......
针对传统 FCM 聚类多阈值分割算法计算费时、应用范围受限制的缺点,提出基于信息熵判据的快速FCM 聚类多阈值分割算法.研究在保持......
期刊
为了解决传统支持向量机对噪声或野值敏感的问题,模糊支持向量机给出一种解决办法,就是区别对待训练样本,为每一个数据点分配不同......
模糊C-均值(FCM)聚类算法是数据挖掘中应用广泛的一种方法,但还存在容易陷入局部极小值和对初始值敏感的缺点,为此提出了一种基于B......
半监督聚类方法利用少量标记数据提高聚类算法的性能,已逐渐发展成为模式识别及相关领域的研究热点.文中首先综述了半监督聚类算法......