经验回放相关论文
传统基于注意力机制的推荐算法只利用位置嵌入对用户行为序列进行建模,忽略了具体的时间戳信息,导致推荐性能不佳和模型训练过拟合等......
多智能体系统是由多个智能体与环境交互组成的分布式决策系统,是分布式人工智能的一个重要研究方向,在复杂未知的现实社会具有广阔的......
障碍规避是无人机等自主无人系统运动规划的重要环节,其核心是设计有效的避障控制方法.为了进一步提高决策优化性和控制效果,本文......
经验回放(Experience Replay,ER)是深度强化学习(Deep Reinforcement Learning,DRL)的重要组成部分,通过重复采样学习保留在经验池中的......
多智能体系统(MAS)是指由多个可以与环境进行交互的智能体所组成的计算机化系统。由于深度强化学习具备极强的探索以及决策能力,深度......
深度强化学习是当前人工智能研究领域新的热门方向,它将深度学习的感知能力与强化学习的决策能力相结合,以端对端的形式实现了从原......
深度强化学习是机器学习领域中一个新的研究热点。它以一种通用的形式将深度学习的感知能力与强化学习的决策能力相结合,并通过端对......
深度强化学习方法将深度学习与强化学习相结合,目前已在多种复杂决策任务的处理中展现出了强大的通用性并取得了突破性的进展。利......
近年来,深度强化学习的取得了飞速发展,为了提高深度强化学习处理高维状态空间或动态复杂环境的能力,研究者将记忆增强型神经网络......
提出了一种新的分层强化学习(HRL)Option自动生成算法,以Agent在学习初始阶段探测到的状态空间为输入,并采用改进的蚁群聚类算法(ACCA)对......
由深度学习(deep learning, DL)和强化学习(reinforcement learning, RL)结合形成的深度强化学习(deep reinforcement learning, DRL)是......
强化学习的经验回放方法在减少状态序列间相关性的同时提高了数据的利用效率,但目前只能用于确定性的状态环境.为在随机状态环境下......
分层强化学习中目前有Option、HAM和MAXQ三种主要方法,其自动分层问题均未得到有效解决,该文针对第一种方法,提出了Option自动生成算......
针对连续状态空间的非线性系统控制问题,提出一种基于残差梯度法的神经网络Q学习算法。该算法采用多层前馈神经网络逼近Q值函数,同......
传统的机械臂控制方法建立在基于任务的精确数学模型之上,缺少自适应性,当环境或任务发生变化时,控制效果大打折扣甚至失控。近年......
行动器评判器(Actor Critic,简称AC)算法是强化学习连续动作领域的一类重要算法,其采用独立的结构表示策略,但更新策略时需要大量......
提出一种基于并行强化学习的建筑节能方法,该方法结合多线程技术和经验回放方法提出一个多线程并行强化学习算法框架,其新颖点在于......
深度强化学习利用深度学习感知环境信息,使用强化学习求解最优决策,是当前人工智能领域的主要研究热点之一.然而,大部分深度强化学......
强化学习是通过最大化累积的期望回报来获取最优策略的一种重要机器学习方法。根据是否需要模型知识,强化学习方法可以分为模型相......
一直以来,强化学习算法在解决与环境进行交互的控制决策问题时由于无法直接处理来自环境的原始感官数据,因而应用范围非常有限,并......
针对实时系统的在线最优控制策略学计算开销高的缺点,提出基于经验回放和Q-Learning的最优控制算法。采用经验回放(experience repl......