K-调和均值相关论文
数据挖掘是在海量的数据中寻找模式或规则的过程。数据聚类则是数据挖掘中的一项重要技术,是人们认识和探索事物之间内在联系的有......
针对 K-调和均值算法中距离度量将所有属性视为相等重要而存在的不足,提出一种利用自动属性加权的改进聚类算法。在算法的目标函数......
使用调和均值的KHM聚类算法,不像KH聚类算法,具有对初始值不敏感的优点。但它作为一个基于中心聚类算法,难以摆脱早熟收敛的问题。为......
针对尽调和均值聚类算法易陷入局部最优的缺点,提出了一种基于改进差分进化的尽调和均值聚类算法。该算法通过引入基于Logistic变尺......
针对K-调和均值算法中距离度量将所有属性视为相等重要而存在的不足,提出一种利用自动属性加权的改进聚类算法。在算法的目标函数......
针对K-调和均值和混沌粒子群聚类算法的优缺点,提出了一种融合K-调和均值的混沌粒子群聚类算法。首先通过K-调和均值方法把粒子群......
针对K-调和均值算法易陷于局部最优的缺点,提出一种基于改进萤火虫算法(firefly algorithm,FA)的K-调和均值聚类算法。将基于FA的粗......
数据挖掘技术是一种多学科交叉的新兴技术,它是随着数据的大量积累以及市场竞争对信息与知识的迫切需求而产生和发展起来的,并逐渐......