【摘 要】
:
振动声桥属于主动作用方式的人工中耳,可用于中耳结构正常的中、重度感音神经性聋以及听骨链有破坏或畸形的传导性聋患者。人工中耳植入后都有不同程度的听力改善[1-6]。植入的振动传感器通过耦合体可以安放于听骨链的不同部位,例如砧骨长突,砧骨短突,镫骨头,镫骨足板以及圆窗等。不同安放位置及不同的耦合体形状,在外科手术时难度差异较大,术后效果也不一致。钳夹式与钟罩式钛合金耦合体均为符合临床标准的中耳重建材料
【机 构】
:
复旦大学附属眼耳鼻喉科医院 上海 200031
论文部分内容阅读
振动声桥属于主动作用方式的人工中耳,可用于中耳结构正常的中、重度感音神经性聋以及听骨链有破坏或畸形的传导性聋患者。人工中耳植入后都有不同程度的听力改善[1-6]。植入的振动传感器通过耦合体可以安放于听骨链的不同部位,例如砧骨长突,砧骨短突,镫骨头,镫骨足板以及圆窗等。不同安放位置及不同的耦合体形状,在外科手术时难度差异较大,术后效果也不一致。钳夹式与钟罩式钛合金耦合体均为符合临床标准的中耳重建材料,但二种耦合体对振动传递的影响仍不是很清楚。目前临床应用传感器主要是钳夹式耦合体置放在砧骨长突的效果较好,但手术安放难度较大。因此本研究通过测量足板振动速度,对比几种方式的传音差异。
其他文献
为了精确地跟踪细胞对纳米载体的内吞过程及定位纳米载体在细胞内的位置,高灵敏度、多功能的荧光示踪剂成为最为有效的手段之一.然而,传统的单色荧光探针常常存在易受背景荧光干扰以及不能长时间示踪等缺陷,从而导致低的分辨率及效率.为了克服这一缺点,多色荧光探针与比率型荧光探针成为了有效解决该缺陷的重要手段.本文中,利用Pd(Ⅱ)催化的活性聚合反应,顺序聚合不同取代基的苯基异腈单体,制备出具有螺旋结构的刺激响
类酶效应是纳米材料最重要的生物效应之一.本文通过研究发现多种纳米颗粒具有多酶活性,采用电子顺磁共振技术揭示了其氧化还原与电子传递机制,为纳米酶机制研究作出了重要贡献;发现纳米颗粒可以通过多酶途径调控细胞内氧化还原水平和电子过程,为发展新型诊疗技术奠定了基础;基于纳米酶机制,发现了抗氧化、心肌保护、炎症特异性成像、定量免疫组化、葡萄糖检测等新功能、新效应和新方法。
本研究即采用3D打印技术,基于微挤出式明胶基细胞墨水的打印工艺,结合海藻酸钠离子交联成形,构建体外宫颈癌三维模型.并通过生长转化因子-β(TGF-β)诱导,对该模型中肿瘤细胞的上皮-间质转化进行了追踪.
胶质瘤在颅内中枢系统(CNS)功能区浸润性生长,其肿瘤组织微环境异常(低氧、周围组织缺血、应力异常)等会导致神经组织损伤.不仅如此,放、化疗过程会进一步诱导急性或慢性神经损伤.同时,血脑屏障(BBB)的存在使得100%大分子药物和98%小分子药物无法进入大脑到达病灶部位.因此,将肿瘤治疗与神经损伤修复相结合,构建了载抗肿瘤药物的单唾液酸四己糖神经节甘脂(GM1)胶束.
糖和蛋白质的相互识别是生命中重要和基本的驱动力,也是多种重要细胞生物功能的基础.基于大分子自组装原理构筑的含糖大分子组装体(GNPs),为研究糖和蛋白质介导的细胞生物学效应提供了很好的分子模型.固有免疫细胞,包括巨噬细胞和树突状细胞,表达多种糖类识别受体,广泛参与抗肿瘤免疫应答.为进一步挖掘GNPs的功能,在本研究中评估了GNPs在肿瘤免疫治疗中的实际贡献。免疫检查点阻断治疗是具有广阔前景的新兴肿
5-氟尿嘧啶(5-FU)是一种亲水性的尿嘧啶类似物,通过抑制脱氧胸苷酸合成酶以及插入RNA和DNA而干扰核苷代谢,对细胞产生毒性,引起细胞死亡,被广泛应用于乳腺癌的治疗.然而,其强烈毒副作用的出现,极大限制了5-FU的临床疗效,因此,亟待探索治疗新策略.随着纳米技术和纳米材料的发展,纳米医药的新起给传统化疗带来新的希望.其中,纳米凝胶是一种能够被水溶胀的具有三维铰链网络结构的纳米级高分子聚集体,其
肿瘤组织和癌细胞内内涵体、溶酶体弱酸环境为pH-敏感药物传递系统提高了理论基础.肿瘤细胞靶向分子生物素与抗肿瘤药物阿霉素通过pH敏感键腙键连接在POSS核肽类树状大分子外围.载药树状大分子能在水中自组装形成120nm左右纳米粒子,通过高通透性和滞留效应(EPR效应)聚集于肿瘤部位并在肿瘤弱酸环境下在肿瘤细胞内部释放出抗癌药物阿霉素,实现在体外和体内对癌细胞的有效抑制.
肿瘤乏氧是肿瘤组织治疗耐受和转移的重要因素,因此靶向肿瘤乏氧区,逆转肿瘤乏氧是当今肿瘤治疗的一个重要方法.肿瘤乏氧区主要位于肿瘤组织内部,而肿瘤内部的高渗透压阻止了抗肿瘤药物的渗透,导致乏氧区药物浓度过低,无法发挥疗效,并有可能导致肿瘤细胞产生耐药性.因此制备了一种由多个表面修饰了乏氧靶向抗体的小粒径W18O49纳米颗粒(WOAC)组成的聚集体(WOACC).该WOACC在正常体液中保持较大粒径的
近年来,基于聚合物囊泡生物的纳米反应器引起了广泛的研究兴趣.在保护负载的催化剂或者反应物,提供受限的高效反应空间,以及通过聚合物性质调节膜通透性方面具有独特的优势.聚合物囊泡纳米反应器也被探索应用于治疗和诊断疾病上.但是,在体内高效实现生物纳米反应器的治疗和诊断效果却很少被研究报道.对于体内应用来说,可控的壁通透性尤其重要,这可以避免脱靶效应,让生物纳米反应器只在所需要的靶组织启动反应.另外,如何