【摘 要】
:
计算爆炸力学的研究目的是使用离散的数学方程式模拟实际物理空间中的爆炸与冲击现象,其采用的计算方法主要包括两类:有限单元法和有限差分法。有限差分法是一种通过物理量依据离散的守恒方程式在空间网格中进行迭代,进而模拟多介质、大变形物理现象的方法。高质量、高效率的有限差分网格生成是进行有限差分计算的前提。其中多种介质的非均匀有限差分网格生成存在诸多难点。
【机 构】
:
北京理工大学爆炸科学与技术国家重点实验室,北京100081
【出 处】
:
2018第十二届全国爆炸力学学术会议
论文部分内容阅读
计算爆炸力学的研究目的是使用离散的数学方程式模拟实际物理空间中的爆炸与冲击现象,其采用的计算方法主要包括两类:有限单元法和有限差分法。有限差分法是一种通过物理量依据离散的守恒方程式在空间网格中进行迭代,进而模拟多介质、大变形物理现象的方法。高质量、高效率的有限差分网格生成是进行有限差分计算的前提。其中多种介质的非均匀有限差分网格生成存在诸多难点。
其他文献
金属多孔泡沫牺牲层是一种新型轻质多功能结构,具有比强度高、比刚度大、吸能效果优异等特点,广泛应用于汽车、航空航天、高铁等领域。本文提出了一种双层密度梯度牺牲层的设想来满足不同的保护结构的需求。利用Voronoi技术建立了四种双层密度梯度牺牲层泡沫。数值模拟研究了爆炸载荷下不同密度梯度分布双层梯度牺牲层的动力响应,并基于R-PP-L模型建立了多种不同类型双层密度梯度牺牲层动力响应的理论模型。利用数值
针对爆炸型含能破片对靶板的侵爆问题,开展内部装药爆轰反应对含能破片侵彻过程的影响研究,利用有限元软件研究了平头圆柱形含能破片的侵爆过程,对比分析了相同条件下含能破片和惰性破片对靶板的侵彻能力和毁伤威力,得到了含能破片的撞击相图以及垂直撞击时的破片临界爆轰速度、临界爆燃速度和极限穿透速度.研究结果表明:装药爆燃或爆轰反应会降低破片侵彻能力,使含能破片侵彻过程存在两个不同的极限穿透速度,垂直撞击时,含
采用欧拉-拉格朗日法结合铝粒子的混合燃烧模型,对微米尺度的铝粉-空气两相爆轰进行了数值研究。研究结果表明,单一分布的铝粉爆轰波面结构存在由于两相相互作用而产生的、与单一气相爆轰不一样的波面结构特征,如波面处存在两个压力峰、两个密度层和温度波谷。这些气固两相爆轰特有的结构,随着粒子大小的变化而变化。在实际情况中,铝粒子的大小是存在一定分布的。采用对数正态分布模拟实际中粒子直径的分布时,两相爆轰的特有
爆炸反应装甲(ERA)被认为是防御破甲射流最有效的被动防御装甲之一,但传统反应装甲具有明显的“角度效应”,即射流入射方向与反应装甲夹角越小,反应装甲的防御性能越低。本文采用弧形夹层结构防御破甲射流,克服了传统反应装甲的“角度效应”,可防御不同方向入射的破甲射流。通过数值仿真计算可知,采用多层弧形夹层结构可以提升防御破甲射流的性能,减小逃逸射流的穿深,且4层弧形夹层结构的防御效率高于3层和5层弧形结
针对小长径比聚能装药EFP成型问题,采用数值模拟方法,通过AUTODYN软件进行研究。研究结果表明,药形罩厚度、药形罩曲率半径以及装药长径比均对EFP成型有显著影响。药形罩厚度主要影响EFP弹丸长径比;药形罩曲率半径主要影响EFP质量分布与弹径大小;装药长径比主要影响EFP速度;小长径比聚能装药能形成EFP,且满足性能要求。
采用数值模拟方法,对曲线罩与传统锥形罩聚能战斗部进行对比分析,并在高斯曲线罩的基础上,设计新的曲线罩聚能战斗部结构,获得了曲线罩射流成型特性与侵彻特性以及隔板对曲线罩的影响。结果 表明:相比于传统锥形罩,曲线罩增加药型罩质量和装药量,使得射流得到充分的拉长,射流头速度和质量增加,有效提高射流的侵彻能力。隔板可以改变爆轰波的波形,有效提高能量利用率,有利于提高小锥角曲线罩射流速度。
为研究起爆端位置对变壁厚壳体破片飞散特征的影响,采用数值模拟方法分析了内部爆炸加载下两种不同锥角变壁厚壳体破片的飞散规律。仿真结果显示:变壁厚壳体破片的飞散方向仍然偏向爆轰波传播方向;变壁厚壳体锥角影响从小端起爆时壳体大端附近破片的飞散方向;小锥角壳体从小端起爆时,破片飞散角略大于从大端起爆时的情况,而大锥角壳体从小端起爆时,破片飞散角小于从大端起爆时的情况。可通过调整变壁厚壳体结构和起爆位置优化
为了解PBX-03炸药在复杂激励情况下(非平面一维撞击作用)的安全性能,采用两种不同阻抗材料的组合隔层作为衰减层,研究炸药在双波结构以及反射波综合作用下的响应情况,采用嵌入炸药之间的PVDF计和高速分幅摄影对压力变化曲线和引发反应的传播过程进行了测量和记录,得到不同衰减层厚度下的入射压力历程、压力变化曲线和冲击传播图像。对实验结果进行分析发现,在不同厚度隔层条件下,压力幅值和底部反射波等因素影响炸
CL-20/TNT共晶是由CL-20和TNT分子组成的一种高能、低感炸药。然而,它具有的潜在性质和分解机理是不清楚的。在这个工作中,我们通过紧束缚态密度泛函方法和多尺度冲击模拟研究了CL-20/TNT的初分解机理。结构表明:随着冲击强度的增加,系统体积减小,温度和压力增加。共晶的分解步骤与其成分是一致的,对于CL-20分子,在低速时N-NO2键容易断裂,然而在高速时被抑制;对于TNT分子,H转移和