基于可视化车辆行驶记录仪的交通事故分析

来源 :第七届国际汽车交通安全学术会议论文集 | 被引量 : 0次 | 上传用户:ningsha
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
根据可视化车辆行驶记录仪(Video Drive Recorder,以下简称VDR)记录信息对交通事故从速度加速度数据及图像两方面进行分析,形成事故过程分析表,根据分析表提取出事故发生的直接原因和深层原因。结果证明根据VDR可详细客观地分析出交通事故的发生原因,是调查交通事故发生机理的有效手段。
其他文献
介孔分子筛由于其均一的孔径分布和高比表面积在大分子催化领域有着良好的前景。但是由无定型的较薄孔壁引起的较差水热稳定性,使其无法满足工艺条件苛刻的化工过程。本课题组通过将Y型分子筛的基本构成单元引入介孔分子筛的骨架中,使得介孔分子筛能在高温水热条件下持续发挥催化作用,但是其稳定性仍然有较大的提升空间。基于本课题现有的研究进展,在前驱体组装法的基础上提高分子筛的壁厚,是提高水热稳定性的另一条有效途径。
学位
聚合物材料因其具有较高柔韧性、优异的阻隔性以及制造的简易性等特点,在军事、建筑、农业等领域具有广泛应用。然而,聚合物材料在不同的使用环境下都经历着光解、光氧化、热氧化和水解等反应,导致这些材料易于老化降解;聚合物降解产物在环境中大量积累,造成环境污染、危害人体生命健康。因此,认识聚合物降解机理对于制定合理的聚合物管理策略至关重要。然而,传统的聚合物降解表征手段,例如傅里叶变换红外光谱(FTIR)、
学位
橡胶制品在当下人们的生产生活中发挥着重要的作用,交通运输、航空航天、石油化工等各个领域中,橡胶材料的身影随处可见。为了更好面对复杂的工作环境,橡胶材料的性能提升被持续研究。芳纶浆粕(AP)高强度以及耐磨的特点可以很好补强橡胶材料,但是其细纤间缠绕导致团聚,难以分散,因此对芳纶浆粕进行预处理使其在橡胶材料中分散均匀成为本课题研究的方向。本文利用氢化丁腈橡胶(HNBR)作为基体,白炭黑作为基础填料、A
学位
染料废水是水污染的一项重要来源。吸附法是一种简单高效的处理染料废水的方法。活性氧化铝和活性炭是最常用的两种吸附剂。活性氧化铝机械强度好和孔径大但比表面积偏小,另外活性氧化铝通常表面带正电荷对阳离子染料吸附量很小。活性炭具有比表面积大但孔道通常以微孔为主孔径偏小的特点。如何制备具有大比表面积和大孔对阳离子有机染料高效吸附剂是目前阳离子染料吸附剂研究重点之一。采用水热法制备了大孔薄水铝石,焙烧后制得大
学位
环境污染和能源短缺问题日益突出,利用太阳能驱动的半导体光催化合成氨技术展现出不俗的潜力。层状复合金属氢氧化物(LDHs)因特殊的层状结构被认为是具有潜力的光催化合成氨材料。影响LDHs光催化合成氨反应效率的因素主要有载流子的分离效率和催化剂的表面状态,其中缺陷工程因能构筑表面活性位点而被广泛应用。目前已有多种实验方法设计并合成LDHs,但是关于载流子的迁移行为尚未通过实验手段说明。此外,关于含空位
学位
氢能被认为是解决环境能源问题最有前途的绿色能源之一,目前甲烷水蒸气重整反应(SRM)贡献了全球近50%的氢气需求。该反应是强吸热反应,为获得较高甲烷转化率需在高温条件下进行,然而,高温易导致催化剂活性金属烧结并发生积碳副反应,且在过热水蒸气气氛中长时间暴露也易使催化剂结构发生转变,从而造成催化剂失活,降低催化剂的应用性能。相较于其他过渡金属,Ru基和Ni基催化剂显示出较优甲烷C-H键活化能力,被广
学位
随着人类经济社会的不断发展,煤炭、石油、天然气等不可再生能源正在不可逆转地被消耗,开发氢能等新能源产业迫在眉睫。燃料电池技术作为氢电转化的核心,与传统装置相比具有清洁环保、效率高等优点,受到了世界各国的关注。聚电解质膜燃料电池按传输离子种类的不同分为质子交换膜燃料电池(PEMFC)与阴离子交换膜燃料电池(AEMFC)。对比目前已经商业化的PEMFC,AEMFC有着较高的阴极氧还原动力学,且在碱性条
学位
在离子膜法制碱工艺中盐水的使用量巨大,由于淡盐水的循环利用和淡盐水所含微量碘的难以脱除,导致了碘在淡盐水中富集,并在阳极室被氧化为高价态IO65-,从而与淡盐水中金属离子结合形成相应的致密的Na3H2IO6和Ba3H4(IO6)2沉淀,造成离子膜的堵塞并降低离子膜的导电性,增加生产能耗损害离子膜使用寿命。在淡盐水中,碘的存在环境复杂,有效的控制碘的转化是目前碘的脱除技术的关键。论文建立了依据观测淡
学位
活性分子长效释放技术广泛应用于化工生产、食品工程及体内给药等诸多领域。目前,在长效释放技术的研究报道中,聚合物缓释薄膜和纳米粒子负载缓释是最常见的长效缓释材料,但在实际应用中存在两个突出的问题:一方面释放时间较短,另一方面存在严重的前期突释现象。针对以上领域存在的核心问题,设计了以下两种体系:1.以甲基橙(MO)为探针分子,MgAl(NO3)-LDH(LDH)作为阻隔材料,制备了两种缓释薄膜:将M
学位
金基催化剂在催化反应中,较其它贵金属催化剂具有反应条件温和、不易过氧化等优点,越来越引起了人们的关注,尤其是具有明确结构的原子精度Aun纳米簇。针对金催化液相氧化研究中载体组成形貌较单一、传统共沉淀/浸渍还原方法合成金纳米粒尺寸较大等问题,本文提出以三元水滑石/石墨烯多级结构为载体、以原子精度金簇为前体合成多级结构金纳米簇催化剂,系统探究载体金属元素摩尔比及金原子数与其催化苯甲醇无溶剂分子氧氧化的
学位