【摘 要】
:
电镀锌广泛应用于机械、航空、汽车及建筑等领域的钢铁的腐蚀与防护,并扮演牺牲性镀层的角色,因此镀层必须具有足够厚度以抵御周围环境的腐蚀,这势必造成锌的浪费.另外,镀层过厚还将导致其焊接性能降低,镀层表面很难达到光亮.
【机 构】
:
哈尔滨工业大学化工学院,黑龙江,哈尔滨,150001
论文部分内容阅读
电镀锌广泛应用于机械、航空、汽车及建筑等领域的钢铁的腐蚀与防护,并扮演牺牲性镀层的角色,因此镀层必须具有足够厚度以抵御周围环境的腐蚀,这势必造成锌的浪费.另外,镀层过厚还将导致其焊接性能降低,镀层表面很难达到光亮.
其他文献
This study explores a new approach to effectively utilize lignocellulosic resources based on in-situ/dynamic plasticization.First, we analyzed mechanism of in-situ/dynamic plasticization of LM and the
The ramie fiber reinforced poly(lactic acid) (RF/PLA) composites were prepared by the commingled yarns method.The effect of different manufacture parameters on the mechanical properties of the composi
In this paper, wood-based inclined lattice truss core sandwich structures made of poplar laminated veneer lumber、 birch dowels and polyvinyl acetate emulsion-isocyanate adhesive were manufactured usin
Bamboo fiber is often chosen as reinforcement for composites as its good mechanical properties.In this paper, bamboo fibers were treated by alkali solution with concentration of 6%, 8%, 10%, 15%, 25%.
Rice straw, wheat straw, wood flour were used to mix with melt high density polyethylene (HDPE) through an extruder to prepare natural fiber/HDPE composites.Results showed that, wheat straw/HDPE compo
电动汽车和便携式电子产品的高速发展对锂离子电池提出了更高的要求,就商业化锂离子电池负极材料来说,传统的碳素负极材料已经接近理论容量难有较大的提升,目前迫切需求寻找一种低成本、高容量且具有优异循环性能的负极材料来代替传统的碳素负极材料.在所有的比较有前景的新型负极材料当中,一氧化硅因独特的结构表现出了优异的循环性能和适宜的脱嵌锂电位,但是因为首次存在一个较大的不可逆反应,SiO表现出了较低的首次效率
A series of nanosized transition-metal oxides such as CoO[1,2],NiO[3],Co3O4[4,5],SnO2[6],CuO[7] which exhibit reversible capacities about three times larger than graphite(372 mAh·g-1) are considered a
由于较高的比表面积,具有三维立体结构的PbO2正极最近被广泛地应用于新型铅酸电池和混合电化学电容器的研究当中[1,2].当用金属(Ti)作为PbO2材料生长的基底时,通常都需要复杂的前期处理且其在酸性介质中的耐腐蚀性能不高.
Due to their high theoretical capacities(up to 1494 mAh g-1),SnOx nanomaterials are considered one of the most potential candidate anode materials for lithium-ion batteries(LIBs).However.their practic
锂离子电池已经广泛地应用于各种手提电子设备的能源,并有望成为电动车和新能源的储能装备.在锂离子电池负极材料方面,硅材料由于具有高的理论比容量( 4200 mAh/g),较低的充放电电压平台,丰富的储量等优点,成为了最有潜力的负极材料之一.但是,硅材料在充放电过程中产生巨大的体积变化(>300 %),导致活性材料的粉化和电极结构的破坏,造成快速的容量衰减,这严重地阻碍了硅材料在实际中的应用.[1]如