新型脂溶性膦类阳离子[18F]FBT4mP作为心肌灌注显像剂的研究

来源 :第十二届全国放射性药物与标记化合物学术交流会 | 被引量 : 0次 | 上传用户:szmms
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  目的:线粒体作为心肌组织中独特的细胞器官,重量约占30%,同时具有高达180 mV的跨膜电位。因此亲脂性的阳离子,可以通过被动扩散进入细胞,再利用跨膜电位富集于线粒体中从而在心肌摄取。已报道的几种PET心肌灌注显像剂,如[18F]FBnTP,[18F]FTPP,等均为亲脂性阳离子化合物。但是,上述化合物的标记与合成步骤普遍较长,产率较低,肝本底高。
其他文献
目的:本研究以促卵泡刺激素受体(FSHR)的激动剂FSH2(FSHβ33-53,YTRDLVYKDPARPKIQKTCTF) 为 靶 向 载 体 , 融 合 裂 解 肽 Lytic(Lys-Leu-D-Leu-Leu-Lys-D-Leu-Leu-D-Lys-D-Lys-Leu-Leu-Lys-D-Leu-Lsu-Lys-Lys-Lys),设计一种新型抗肿瘤多肽FSH2-Lytic.利用microP
目的:本文旨在利用我们基于微流控芯片技术研制的微型18F标记反应仪器,发展雌激素受体特异性分子影像探针18F-FES的常规自动化生产方法,降低其生产成本,提高其比活度,并行乳腺癌肿瘤模型MicroPET/CT显像。方法:我们设计的微型18F标记反应仪器与半制备HPLC和SPE萃取单元联合,18F-FES的自动化标记合成、分离纯化和赋型。制备18F-FES的关键试剂用量低至传统的1/10~ 1/20
会议
目的:正电子发射断层成像法(positron emission tomography, PET)是当今最先进的核医学分子影像技术,可从体外无创、高灵敏度、高特异性、半定量地反映机体和病灶的代谢特征.在肿瘤、心血管疾病、神经系统疾病的诊断、疗效监测及新药开发等领域是不可替代的重要影像学手段.PET的应用依赖正电子类放射性核素标记示踪剂,后者的发展是推动PET进步的主要动力之一.
线粒体功能障碍在很多疾病的病因和发病机制中起关键作用,并表现出细胞器的膜电位大幅度变化[1]。评估患者的膜电位的变化对于诊断疾病是非常有价值的,对此我们开发了一种新型线粒体靶向PET探针,亲脂性18F-氟甲基三苯基磷阳离子化合物([18F]-FMTPP),实现该探针的全自动化合成、并进行理化性质测试、质量控制、生物分布和心肌显像研究。方法:前体TPPMOTf由TPPMB与AgOTf在乙腈中回流过夜
炎症性肠病是一组病因不明的慢性非特异性肠道疾病,目前主要是依据肠镜和组织病理学检查来确诊.其在国内的发病率有增高的趋势,尤其是溃疡性结肠炎由于该疾病临床表现的复杂多样性,克罗恩病的漏诊率为60.9%,误诊率为为36.8%;溃疡性结肠炎漏诊率为32.1%,误诊率为27.5%.而炎症性肠病由于不能早期及时得到正确的治疗,容易成为慢性活动性病患或造成严重并发征.
目的:叶酸受体的靶向性已经成功应用于叶酸受体阳性肿瘤的显像和治疗药物的设计,目前已研究了多种用于SPECT和PET显像的叶酸类放射性药物。正电子类药物由于其更加优良的性质而成为现在研究的热点,68Ga是一种可以通过68Ge/68Ga发生器得到的正电子核素,廉价易得,因此受到越来越多的关注。本文以蝶酰赖氨酸[1]为基本骨架来合成叶酸衍生物Pteroyl-lys-DOTA,并进行68Ga标记和体外性质
局部粘着斑激酶(FAK)是一种多功能胞质非受体型酪氨酸蛋白激酶,近年研究发现FAK在多种恶性肿瘤细胞中高表达,与恶性肿瘤细胞的生长、增殖、侵袭及转移、新生血管形成等多种生物学过程密切相关,因此FAK表达水平可以作为肿瘤早期诊断、治疗和预后评价的指标,是潜在的肿瘤诊治靶点。
粘着斑激酶(Focal Adhesion Kinase,FAK)的作用涉及肿瘤发生、发展等多个环节,参与肿瘤细胞黏附、侵袭、迁移、增殖及凋亡等多种生物学行为.FAK几乎在所有的肿瘤细胞中都存在过度表达现象,因此FAK表达水平可以作为肿瘤早期诊断、治疗和预后评价的指标,是潜在的肿瘤诊治靶点.我们在对自身设计合成的FAK抑制剂进行一系列筛选的基础上,将对其中抑制活性较强的分子进行等F-18放射性核素标
正电子发射型计算机断层显像(Positron Emission Tomography,PET),是核医学领域比较先进的临床检查影像技术,具有灵敏度高,特异性高,可全身显像和安全性好等优点.目前,应用于PET显像的放射性核素主要以18F为主.但18F半衰期较短(110min),不适合长途运输.开发长半衰期PET药物对于促进PET技术应用意义重大,而64Cu不但半衰期适宜(12.7 h),而且既能用于
会议
随着核医学的发展,核医学分子影像特别是正电子发射计算机断层显像(PET)的应用在肿瘤诊断和治疗方面显示出了巨大的优势和潜能。神经内分泌肿瘤(neuroendocrine neoplasm,NEN)是一组起源于肽能神经元和神经内分泌细胞的异质性肿瘤,大多数神经内分泌肿瘤细胞存在生长抑素受体,目前PET放射性核素68Ga标记生长抑素类似物用于NEN显像在临床上应用广泛[1],经典的生长抑素类似物为奥曲