【摘 要】
:
Ternary two-dimensional transition-metal dichalcogenides,have recently attracted tremendous interest due to their modulated carrier mobility values and electronic structure.1-2 Our group has reported
【机 构】
:
Institute of Functional Nano & Soft Materials,Soochow University,Soochow Jiang Su,215123
论文部分内容阅读
Ternary two-dimensional transition-metal dichalcogenides,have recently attracted tremendous interest due to their modulated carrier mobility values and electronic structure.1-2 Our group has reported a solution method to prepare monolayered MoS2(1-x)Se2x alloy nanoflakes demonstrating that with the chemical composition of MoSSe exhibit improved performance in comparison to either MoS2 Or MoSe2.3 In this work,we adopt the same method to prepare quaternary Mo(1-x)WxS2(1-y)Se2y Alloy Nanoflakes to maximum the electrocatalytic activity for hydrogen evolution reaction by tuning the ratio of precursors.
其他文献
燃料电池是利用电化学反应,将存储在燃料中的化学能高效率、低污染的转化成电能的发电装置,能量转换效率高达60 %-80 %,其利用燃料与氧化剂分别在电池的两极发生氧化还原反应,只要燃料源源不断地持续供给,就可一直提供电流.因为燃料的化学能转换为电能的过程不受"卡诺循环"的限制,实际使用效率是普通内燃机的2~3倍,从理论上证实了燃料电池效率高的原理.以H2O2替代氧气作为阴极氧化剂的燃料电池,具有体积
H2O2基燃料电池具有高效、清洁、易操作及安全性高等优点.H2O2电还原催化剂的性能及稳定性直接关系到H2O2基燃料电池性能的提升.贵金属Pd基催化剂对于H2O2电还原反应展现了很好的催化活性和选择性.将贵金属分散担载在某些载体上可以降低贵金属用量,提升其利用率.本文研究了以SnO2纳米棒为担载体,釆用两种不同的方法(化学还原法[1-2]和溶剂热还原法[3])制备Pd/SnO2催化剂,考察了制备方
随着化石燃料能源匮乏和环境污染等问题相继出现,人们对清洁能源给予了更多的关注.其中最具潜力的清洁能源之一便是氢能,它具有高效、清洁、安全及可持续性等优点.电解水是最推崇的制式,早期常用贵金属(如Pt等)作为电解水的阴极材料[1],而贵金属较高成本成为制约制氢工业发展进程的重要因素.为了降低阴极材料的成本,常采用镍基合金来代替贵金属,因镍基合金具有高催化活性、循环寿命长、较低析氢过电位等优势[2,3
Electrochemical energy conversion devices ranging from fuel cells to metal-air batteries demand effective electrocatalysts for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)[1].In pa
The insertion/extraction type anode materials,due to the high reversibility and high energy efficiency,have been considered to be the most promising anode materials.As the typical representative,graph
近年来,导电高分子因其可逆的氧化还原特性,引起了学者们的广泛关注.聚苯胺(PANI)作为一种聚合过程简单、环境稳定性好的导电高分子,逐渐成为金属腐蚀科学领域研究的热点,研究表明,聚苯胺对金属的防护主要是在金属表面形成钝化膜,阻隔腐蚀介质对金属的浸透[1],但单一的聚苯胺不易分散,抗划伤性差,常与环氧树脂和无机纳米金属氧化物掺杂,如Fe3O4,ZnO,TiO2等,提高其耐蚀性能.
Hydrogen is a clean energy carrier and is considered as a promising candidate to solve energy issues due to its highest energy density(143 kJ/g) [1].The most effective way to create hydrogen is the sp
Poor cycle performance and obvious capacity decay are the main reasons which hinder lithium metal secondary battery,such as Li-Air battery and Li-S battery,towards commercial application at present[1]
在有机电化学合成中需要使用大量的支持电解质保证体系的导电性,一般采用无机或者有机盐,对支持电解质的回收利用非常困难,会产生大量废料造成严重的污染,因此寻找一种可以回收利用的支持电解质非常有必要.本研究报道了离子液体聚合物和碳黑组成的复合材料[1](图1)作为支持电解质进行的有机电化学反应,同时对其重复利用进行了研究.
作为主动式功能材料,电致变色器件在智能窗、显示器件、存储器件等均具有广泛的应用前景.常见的电致变色器件的结构包括:透明导电层、阳极电致变色层、离子导电层、阴极电致变色层和透明导电层.电解液或离子导电层是电致变色器件中必需的组成部分.