论文部分内容阅读
近年来,有机/无机杂化钙钛矿量子点以其自身优异的特性而引起了人们的广泛关注。相比传统的有机发光材料,有机/无机杂化钙钛矿量子点作为直接带隙半导体材料,具有荧光量子产率高、色纯度高、光谱在可见光区域可调以及制备工艺简单等特点,在发光二极管、太阳能电池、光探测及激光器件等领域有广阔的应用前景。本论文的研究目的是合成出高荧光量子产率的CH3NH3PbBr3钙钛矿量子点材料,进而制备出高性能的钙钛矿量子点器件。主要研究了钙钛矿量子点的光电性质和及其在QLED中的应用,利用聚合物掺杂小分子与双聚合物掺杂的空穴传输层来优化器件结构,提高其空穴传输性能,促进发光层中的载流子的平衡复合,最终制备出低启亮电压、高亮度的绿光QLED器件。具体的研究内容如下:1.基于改进的配体辅助再沉淀技术,合成出粒径约5 nm的胶体CH3NH3PbBr3钙钛矿量子点,并将其分别分散于正己烷和甲苯溶剂中。使用TEM及XRD对钙钛矿量子点的形貌和结构进行测试表征;利用XPS与UPS对钙钛矿量子点进行了元素和能级结构的分析;通过SEM和AFM测试,比较了不同分散剂对量子点薄膜成膜性的影响;利用稳态和瞬态PL光谱探究了不同分散剂对量子点光学性质的影响。结果表明正己烷溶剂与量子点的表面配体具有良好的相容性,使量子点具有较高的荧光量子产率,且具有较好的成膜特性。为进一步研究钙钛矿量子点发光器件提供了依据。2.将所合成的钙钛矿量子点材料作为发光层制备出绿光QLED器件,其结构为:ITO/PEDOT:PSS/HTL/QDs/TPBi/LiF/Al。利用聚合物PVK掺杂不同的有机小分子作为空穴传输层来研究其对发光器件的性能影响。通过SEM、AFM、瞬态PL光谱探究了不同空穴传输层对钙钛矿量子点薄膜的影响。通过开尔文探针对空穴传输层能级的变化进行了分析,并利用交流阻抗谱测量了器件的传输电阻。结果表明,PVK掺杂TAPC作为空穴传输层可以明显提高器件的空穴传输能力,降低空穴传输层与发光层间的势垒,平衡了载流子在发光层中的注入,从而降低了器件的启亮电压并提高了器件的发光性能。最优化的QLED器件的启亮电压降低至3.6 V,在9 V下获得了6466 cd/m2的最大亮度,其最大电流效率为7.06 cd/A。3.利用溶液法制备出双聚合物掺杂型(PVK:PTAA)的空穴传输层,通过调节掺杂比例及优化其成膜特性,有效提高了QLED器件的发光性能。利用AFM、SEM、稳态及瞬态PL光谱对空穴传输层进行了表面形貌与光学特性的测试表征;通过开尔文探针、C-AFM和交流阻抗等方法分析了空穴传输层的能级与电荷传输特性。结果表明PVK掺杂PTAA的空穴传输层提升了薄膜表面的功函数,提高了其空穴传输能力,并有效地阻挡了电子向传输层的扩散,从而促进载流子在发光层中有效地平衡复合。最优化的钙钛矿QLED器件的启亮电压为3.2 V,最大亮度提高到7352 cd/m2,器件的电流效率也提高到11.10 cd/A。