【摘 要】
:
在线学习的重要目标之一是实现基于智能技术的个性化学习服务,从而促进规模化下的个性化教育。为此,教学资源服务的智能化、个性化改造成为两项核心任务。论文以此为目标,通过对教学资源基于知识图谱技术的重构组织,配套对学习者学习水平和需求的测评分析,实现面向学习者的个性化学习服务。为此开展了相关技术的研究和系统原型实现,形成基于知识图谱的个性化学习平台,它将知识点的学习、习题的训练和个性化推荐相融合,构成一
论文部分内容阅读
在线学习的重要目标之一是实现基于智能技术的个性化学习服务,从而促进规模化下的个性化教育。为此,教学资源服务的智能化、个性化改造成为两项核心任务。论文以此为目标,通过对教学资源基于知识图谱技术的重构组织,配套对学习者学习水平和需求的测评分析,实现面向学习者的个性化学习服务。为此开展了相关技术的研究和系统原型实现,形成基于知识图谱的个性化学习平台,它将知识点的学习、习题的训练和个性化推荐相融合,构成一个个性化学习服务的闭环。主要完成工作有:(1)基于知识图谱的学习资源构建:根据需求定义课程资源图谱的结构,设计一种可视化的课程资源图谱构建工具,以此完成课程知识体系和教学资源的整合。(2)个性化推荐:基于协同过滤算法设计了基于知识图谱的个性化推荐方法,该方法通过习题作答成绩诊断学生未掌握的知识点,并通过协同过滤算法预测学生未学习且未掌握的知识点。根据诊断和预测的结果,结合课程资源图谱,生成知识掌握图谱,依据图谱中知识点的掌握度,以及图谱中知识点之间的关系,为学生进行个性化推荐。(3)平台实现:根据需求和设计,将个性化学习平台划分为五个微服务,分别是系统管理、学校管理、考试测评、课程资源图谱构建和个性化推荐。采用前后端分离的开发方式开发,前端使用Vue全家桶技术栈,知识图谱可视化使用D3.js中的力导向图。后端使用Spring Cloud作为微服务框架,相应的业务微服务开发框架使用Spring Boot,通过以上技术对五个微服务进行开发与实现。
其他文献
科学技术的进步,最终应当推动社会的发展,提高人民的生活质量。目前果蔬称重贴码有专人称重和顾客半自助称重两种方式。专人称重方式,人工成本高,不适合投放多台设备;半自助称重方式由顾客在上百种果蔬中进行选择称重,虽然可以投放多台设备,但单次称重时间花费较长,这两种称重方式在超市人流量较大时,都会导致拥挤现象。因此,设计研发一套基于目标检测的果蔬自助称重系统是非常有必要和有价值的。本文所研究的内容:基于R
传统的图像分类任务需要大量的有标签数据进行训练,但是在现实生活中,数据的收集与标注是非常困难的,因此,如何在样本不足甚至没有样本的情况下对物体进行识别的零样本学习算法成为研究热点。零样本学习是迁移学习的一个分支,旨在对训练过程中没有出现过的类别进行分类。目前比较主流的研究方向有基于语义嵌入空间的零样本学习和基于视觉嵌入空间的零样本学习。本文分别对这两种方向的算法进行了研究改进,主要工作内容如下:(
中国书法是中国传统文化的艺术瑰宝,是一种独特的视觉艺术,具有很高的研究价值。随着博物馆的数字化转型,采用计算机技术对石刻碑文进行数字化保护需求迫切。但是,古代碑文由于时间跨度较大、人为初期保护意识较差以及自然天气的影响等,存在大量的背景噪声,导致传统的数字化技术难以得到较好的视觉效果。为此,本文针对古代碑文的去噪和识别问题,展开了细致研究。首先介绍了对古代碑文数字化处理的背景与意义,其次分析了图像
随着人类社会文明的进步,人与人之间信息的传递由听觉主导逐渐让位于视觉主导,时至今日,“读图时代”的到来愈发成为人们的共识。图符语言作为一种基于图像与意象的视觉信息传递媒介,丰富了人们日常交流的表达形式。针对西北大学J824实验室提出的一种图符语言“和”,本文对“和”语言移动端输入法——和弦展开以下研究:1.分析国内外图符语言的研究现状,结合口语文化背景对“和”语言口语化模型进行建模,给出了“和”语
从CT血管造影数据中获取可靠的冠脉中心线对临床实践具有重要意义,冠脉中心线可以为冠脉的狭窄评估和动脉粥样硬化斑块提供先决条件,所以学者们开始用不同的研究方法从计算机断层扫描血管造影(CTA)中提取中心线。由于冠脉中心线细小、结构复杂,并且存在低剂量成像噪声以及呼吸心跳引起的重建伪影等问题的影响,导致冠脉中心线的获取非常困难。为此,本文提出了一种基于深度追踪网络的多任务冠脉中心线提取方法。文中的贡献
人群密度估计是人群计数工作中的重要计数方法。目前,大多数人群密度估计方法都侧重于研究单视角图像内人群头部特征的提取方式,但由于视角信息的不足,这类方法难以解决人群遮挡和广域计数等问题。因此,为了解决这类问题,论文重点研究多视角人群密度估计的相关方法,并针对多视角人群密度估计方法中的图像空间信息提取不足、多尺度目标特征提取不充分、特征空间映射结果不准确等问题进行优化,以提高多视角人群密度估计方法在不
视频可以提供比图像更丰富的视觉信息,从视频中提取的时空特征可应用于多项视觉任务。如:视频检索、动作识别、视频生成等。在现有的视频时序特征学习的模型训练过程中,视频被随机输入到网络模型中来学习时序特征。但在现实情况下,视频具有不同级别的帧/视频段的序列显著性,模型更容易准确识别具有帧/视频段序列显著性高的视频,而不容易准确识别帧/视频段序列显著性低的视频。因此,有效利用帧/视频段序列的显著性将有利于
秦岭是横跨中国中西部亚热带和暖温带间的过渡区域,是中国南北的地理分界线和黄河与长江水系的分水岭。由于秦岭独特的地理位置,使得该地区孕育了丰富的物种资源。秦岭也是世界生物多样性热点区域之一,被称为世界罕见的―生物基因库‖。然而,长期以来,秦岭地区特有植物响应地质变迁的起源进化历史以及全球气候变化对秦岭地区特有植物的影响机制尚不清楚。本研究以我国秦岭地区自然分布的30种特有植物为研究对象,通过二代测序
随着教育普及性提升,大学生人数日益增加,具有心理问题的学生也越来越多,能否及时发现心理异常学生是目前高校面临的主要问题之一。高校教育大数据对分析和识别心理异常学生发挥着至关重要的作用。本文以学校一卡通、教务系统、门禁系统及相关业务系统收集的教育数据为基础,通过对海量杂乱的学生在校数据进行数据清洗、变换等处理后,提取学生行为特征。并通过假设检验分析正常学生与心理异常学生的在校行为特征差异,最终建立识
工业化进程的加速和城乡建设空间的扩张推动了我国城乡结构的巨大变化,具体而言,2019年我国的常住人口城镇化率约是1978年的3.4倍,而城镇人口则是1978年的4.9倍。40多年“压缩型”城市化进程,给我国的城市发展带来了诸多问题。党的十九大以来,城市建设开始步入追求高质量发展的新时期,面对国土空间规划工作的全面开展,识别和划分不同城市用地的主导功能,是确定城市未来发展方向的重要基础,也是构建国土