【摘 要】
:
强关联电子体系是凝聚态物理研究领域中的热点,也是难点。电子和电子之间的库仑排斥作用不可忽略是强关联电子体系的特点,这可能使得传统的能带理论在该体系中运用时失效。当电子与电子之间的库仑相互作用足够强时,体系可能呈现出很多新奇的物理现象。比如高温超导,莫特相变,庞磁阻效应,分数量子霍尔效应,重电子态等等。本文主要通过角分辨光电子能谱技术(ARPES)和扫描隧道显微技术(STM/STS)系统地研究了Ce
论文部分内容阅读
强关联电子体系是凝聚态物理研究领域中的热点,也是难点。电子和电子之间的库仑排斥作用不可忽略是强关联电子体系的特点,这可能使得传统的能带理论在该体系中运用时失效。当电子与电子之间的库仑相互作用足够强时,体系可能呈现出很多新奇的物理现象。比如高温超导,莫特相变,庞磁阻效应,分数量子霍尔效应,重电子态等等。本文主要通过角分辨光电子能谱技术(ARPES)和扫描隧道显微技术(STM/STS)系统地研究了CeIn3,Fe3GeTe2以及CeSb2几类重电子材料的电子结构,着重分析了其重电子态与几类电子自旋相关态的关系。我们通过ARPES,STM/STS以及第一性原理计算的研究,首次获得了反铁磁重电子材料CeIn3在低温下的三维费米面拓扑结构及其费米能附近的电子结构。并且发现在该体系中,4f电子的局域性占据主导,只有少部分的4f电子与传导电子杂化,形成重费米子态。随着温度进一步降低,我们发现4f电子与传导电子的杂化强度在反铁磁相内并没有消失,只是有所抑制。上述实验现象对理解重费米子材料中重电子态、磁性甚至超导的关系具有重要的意义。我们主要通过ARPES、STM/STS以及第一性原理计算的研究,首次获得了3d-电子巡游铁磁材料Fe3GeTe2的费米面拓扑结构及其费米能附近的电子结构。发现该体系在进入铁磁相后,其电子结构出现明显的重整化并且其电子有效质量显著增强。此外,当温度继续降低,费米面处的态密度进一步增强。结合多种表征手段,我们认为,在该材料中,重电子态在在铁磁相内产生,并且铁磁相变对重电子态的产生起到了促进作用。这是首次在3d电子体系中观测到了重电子态与铁磁相的共存,也需要理论工作者对这一领域展开进一步的研究。我们主要通过ARPES,电输运以及磁化率的测量,阐释了重电子材料CeSb2在低温下复杂的磁性结构及其磁各向异性。首次获得了CeSb2在顺磁相的费米面拓扑结构及其价电子能带结构。发现在该体系的价电子能带结构中,除了常规的抛物线形能带外,在布里渊区Γ点附近还存在线性交叉的Dirac型能带。该能带随着光子能量的变化无明显变化,表明其二维性较强。结合电输运测量,我们认为该材料中可能存在外尔费米子态,然而这还需要进一步的实验、理论研究。
其他文献
在页岩气开采过程中,定向钻井与水力压裂是两个关键工程步骤,而它们都是在页岩这种各向异性材料中完成的。页岩在宏观上由于沉积作用表现出本构、强度与断裂的各向异性,在微观上则呈现出多孔介质材料的特征。因而对于页岩这种各向异性多孔材料的强度性质和断裂行为研究具有重要的科学意义和工程价值。多孔充液弹性本构模型将固体骨架与含有流体的连通孔隙在宏观上看作一种均匀材料,避免了讨论复杂的微观结构,同时可以描述介质中
空中水汽输送是全球水循环中最为活跃的一个环节,水汽输送的特性影响着降水的形成和分布,进而对全球各地区水资源条件和生态环境产生深远的影响。但是,目前我们仍缺少相关的模型工具从水文水循环视角来描述空中水汽输送的格局和结构。针对这一问题,本文提出了一种利用数学中的图结构对复杂的水汽输送格局进行描述的概念性模型,即水汽输送网络。水汽输送网络的研究以追踪每个水汽单元的拉格朗日运动轨迹(迹线)为基础。为了建立
估计理论主要是指通过经验或者测量数据对模型中的参数的值在某种误差准则下给出最优估计。在控制理论中的估计问题主要是指通过对系统的输出进行测量来实现对系统状态和参数的估计。在实际中控制系统常常受到外部干扰和噪声等因素的影响,系统的状态通常是随机的。对系统的观测一方面部分状态不可直接观测,另一方面也会受到观测噪声等的影响,具有随机误差。因此控制理论中的估计问题在数学上被抽象成对一个随机微分方程组在给定观
在撞击中,能量吸收结构通过消耗冲击能量从而保护乘员或核心部件。金属薄壁结构的塑性大变形和韧性断裂能够不可逆转地吸收大量动能,且质量较轻,故常被用作能量吸收结构的主要耗能方式。相比其他薄壁结构的变形,金属圆管在刚性模具轴压下的膨胀、缩径、翻转变形具有单位质量能量吸收率(SEA)高、反力稳定且无峰值、对载荷不敏感等优势,故在工程中得到了广泛的应用。理解和优化圆管变形的能量耗散机制是冲击防护领域有重要意
形状驱动效应和形状共存是A-130缺中子过渡核区原子核的重要特性之一,反映原子核中单粒子运动和集体运动的相互关联和转化,而在A-140丰中子核区,反射不对称性的八极形变对原子核内基本对称性的研究具有重要意义,两者均是原子核高自旋态研究中的前沿且重要的课题。本工作中对缺中子核129Xe和丰中子核140,141Xe的高自旋态研究,便是从以上两方面分别给出原子核的结构和形状等信息。在129Xe研究中,通
对强相互作用物质的研究,特别是对其对称性的破缺和恢复,以及与之对应的相变现象的研究,仍然是目前理论物理领域的一个重要课题。随着研究的深入,人们自然地开始考虑更多的自由度,例如磁场和手征化学势等。这些自由度极大地丰富了QCD相图的结构,也加深了人们对于强相互作用体系的认识。同时,在天文学、粒子物理和凝聚态物理等众多领域,这些研究也具有着重要的应用。而作为研究强相互作用物质的重要实验手段,相对论重离子
跨流域多尺度流动问题具有重要的学术研究和工程应用意义。本文对适合全流域的统一气体动理学格式进行改进,提高其计算效率,并应用到典型跨流域多尺度流动问题的数值模拟研究。为提高大规模并行时的计算效率,基于物理空间和速度空间同时分块,采用高效的并行分组算法,并调整了UGKS的计算流程,发展了三维复杂分块结构网格上适合大规模高效并行计算的UGKS算法。多种典型算例测试验证了新算法在从小规模到超大规模计算中的
粲偶素系统为研究量子色动力学中微扰效应和非微扰效应提供了有效场所。粲偶素衰变过程的实验研究对更好地理解粲偶素的性质和衰变机制具有重要意义。利用第二代北京正负电子对撞机上第三代北京谱仪采集的448.1百万的ψ(3686)事例,通过E1辐射过程ψ(3686)→YχcJ对粲偶素χcJ的双光子衰变和强衰变做了详细研究。通过测量χc0),2→γγ过程的分支比,得到了χc2的双光子衰变宽度和χc0的双光子衰变
中微子振荡的实验发现表明中微子有质量,意味着标准模型还不完善,或者存在超出标准模型的新物理。因此,中微子振荡的精确测量研究对于揭示中微子的本质与属性具有重大的意义。反应堆裂变反应产生的高流强反电子中微子是测量中微子振荡属性的理想来源,但是反应堆反电子中微子在短基线区域的流强测量,与目前反应堆核裂变模型加上三代中微子振荡理论模型共同给出的预期相比存在反常的缺失,这就是“反应堆反中微子反常”现象。本论
原始的QCD手征有效拉氏量只包含赝标介子这一种自由度,然而随着紫外截断的升高,矢量介子和重子等高阶激发理应被纳入有效场论.包含矢量介子的手征拉氏量通常有两种构造方法:隐藏规范对称性模型和2-形式物质场模型,由于前者有更为良好的收敛性和现象学预言,因此被更多采用.包含重子的有效场论往往分为相对论模型和非相对论模型,在大Nc极限下,Nc体量子力学和Skyrme模型等非相对论描述均给出了自洽的物理量Nc