【摘 要】
:
盲源分离问题是盲信号处理领域中经典且非常重要的问题之一,在军事、通信、医学等众多领域有重要的应用价值。盲源分离的含义是在不知道源信号及信号混合参数的情况下,仅通过观测到的混合信号获得源信号的估计。通过观测信号的协方差矩阵或者累积量矩阵具有可近似对角化的结构,获得源信号的估计的方法称为矩阵联合对角化算法,是解决盲源分离的一类非常有效的代数算法,已广泛的应用于盲信号分离问题之中。根据联合对角化是否具有
论文部分内容阅读
盲源分离问题是盲信号处理领域中经典且非常重要的问题之一,在军事、通信、医学等众多领域有重要的应用价值。盲源分离的含义是在不知道源信号及信号混合参数的情况下,仅通过观测到的混合信号获得源信号的估计。通过观测信号的协方差矩阵或者累积量矩阵具有可近似对角化的结构,获得源信号的估计的方法称为矩阵联合对角化算法,是解决盲源分离的一类非常有效的代数算法,已广泛的应用于盲信号分离问题之中。根据联合对角化是否具有正交性,分为正交联合对角化和非正交矩阵联合对角化算法;根据结构是否具有对称性(Hermitian),分为对称(Hermitian)联合对角化和非对称(non-Hermitian)联合对角算法。因为对称(Hermitian)矩阵具有良好的结构性质,设计出了很多优秀的算法。相对而言,非对称(non-Hermitian)矩阵联合对角算法较少,设计困难。本文主要基于最小二乘的思想和Givens旋转的思想研究non-Hermitian联合对角化算法,具体如下:1.基于最小二乘的子空间拟合代价函数,把所求左右对角化器按照列向量分解,每步更新左右对角化器的一列向量,最终代价函数转为求解相应矩阵的最大奇异值对应的左右奇异向量问题。同时,我们也对算法的收敛性进行了分析。2.受Givens旋转求解Hermitian矩阵特征值和Jacobi-like型Hermitian矩阵联合对角化算法思想启发,构造广义的含参Givens迭代矩阵,建立了基于Frobenius范数的代价函数。代价函数含有所求参数的高阶项,导致求解困难,因此在两种合理的假设条件下进行省略化简,得到对应的non-Hermitian矩阵联合对角化算法。最后,通过数值实验说明了算法是快速、稳定和有效的。
其他文献
在我们的日常生活中,随处可见各类物联网设备,如何管理这些设备是物联网大规模应用中的一项重大挑战,解决办法之一是在这些设备上安装定位系统,以便实时了解设备的位置。此外,在物联网传感设备提供的应用中,大部分都是基于位置的服务,如果不知道设备的地理位置,那么传感器的数据将毫无意义。大多数基于位置的应用程序,通常会使用全球定位系统GPS来进行定位。然而,使用GPS带来的能耗非常高,并不适用于物联网中低功耗
随着互联网的发展,网络上出现越来越多的文本,人们迫切需要通过文本关键词快速获取文本的主要内容,以判断文本是否是自己感兴趣的。同时文本关键词提取作为自然语言处理(NLP)领域一项基本研究,其算法的效果直接影响到许多下游任务的效果。因此文本关键词提取算法得到了广泛的关注与研究。基于图的文本关键词提取算法不仅能通过词语之间的关系来衡量词语的重要性而且该类方法为无监督的方法,因此被广泛研究。然而该类方法在
近年来,由于民航乘务人员和旅客需求的不断更新,电子技术在民航客舱环境下的应用也在不断扩大和上升。民航客舱环境下,为了保证应用间通信的实时性和可靠性,对系统提出了非常高的要求。为了满足这样的实时应用程序的需求,对象管理组织通过发表DDS规范,提出了一个以数据为中心的发布/订阅通信模型,并使用这样的模型来进行数据分发。然而,目前国外诸如RTI DDS等应用于航空客舱环境的中间件大多为商用产品,开源产品
动作识别任务拥有着很长的历史,近年来随着深度学习的发展,更是取得了长足的进步。但以往的动作识别任务都是基于RGB数据的,只是最近以微软的Kinect camera为代表的深度传感器的逐渐普及,才出现了基于骨骼点的动作识别方法。3D骨骼点数据相较于RGB数据而言,排除了人体形态、所穿衣着和光照等冗余信息,却纯粹保留了“人体动作”本身的关键信息,这使得基于骨骼点的动作识别任务吸引了越来越多研究者的注意
当前,集成电路不断发展,现场可编程门阵列(Field Programmable Gate Array,FPGA)得到了广泛应用,但传统的密钥存储方法容易遭到攻击,对FPGA的安全认证问题提出了新的挑战。物理不可克隆函数(Physical Unclonable Function,PUF)作为一种有前途的解决方案,能够为FPGA生成安全可靠的物理指纹。环形振荡器(Ring Oscillator,RO)
基于单目图像或者视频序列的深度估计算法,无需昂贵的深度传感器设备就可以得到场景的深度信息,受到了学术界和工业界日益增长的关注。高精度的深度估计在很多工业场景中具有很强的应用价值,包括机器人感知、导航、规划以及无人驾驶和虚拟现实娱乐领域。现有的基于监督学习的单目深度估计方法,通常利用单一视角的图像数据作为输入,直接预测图像中每个像素对应的深度值,需要大量的深度标注数据作为监督信号,而这类数据通常需要
教育治理是深化我国教育领域综合改革的重要举措,现已成为教育领域研究者的研究热点。文章以2005-2020年中国知网收录、CSSCI来源期刊刊载的369篇教育治理研究论文为分析对象,运用关键词词频与聚类分析等方法剖析教育治理研究的“知识地图”。整体而言,我国教育治理研究成绩斐然,但教育治理理论与实践研究尚不能满足我国教育现代化建设的需求。未来,教育治理在研究逻辑上,要立足于中国特色国家治理体系和治理
量子力学是现代物理学的两大基本支柱之一,是描述微观世界系统的理论。Schr(?)dinger方程是量子力学的核心方程,是将波动方程与物质波的概念相互结合所建立的非相对论的二阶偏微分方程。Schr(?)dinger方程显示了微观系统中粒子的状态随着时间变化的规律,每个微观系统都有一个相对应的Schr(?)dinger方程(组),绝大部分微观系统导出的Schr(?)dinger方程组都是耦合的,因此在
声音场景重建是一种根据音频信号中声音事件特征重建场景图像的新型信息处理方法,在场景感知、安全侦察、多媒体分析、电影场景制作等方面具有广泛的应用价值。目前用于声音场景重建的生成对抗网络理论依然处于初期发展阶段,模型训练过程稳定性欠佳,并且重建图像的分辨率与质量也难以满足要求。为此,本文重点围绕基于生成对抗网络的声音场景重建理论与实现方法,针对注意力机制、谱归一化、UNet网络、残差网络及金字塔网络等
作为变分不等式的一个推广,半变分不等式及其系统在力学、物理学、工程科学、经济学、最优控制等领域都起着重要作用。因此,以KKM定理、有限元方法或者满射性引理等为工具,各种类型的半变分不等式及其系统被广泛研究,并获得了丰富的研究成果。在本文中,我们考虑了一类广义的系统变分--半变分不等式模型,该模型可应用于研究一类热粘弹性体的摩擦接触问题。首先,在Bochner-Lebesgue空间中,本文研究了带有