论文部分内容阅读
常规和臭氧-生物活性炭(O3-BAC)水处理工艺被广泛应用于饮用水的深度处理中,其工艺单元微生物群落构成复杂,当净水厂发生运行事故或微生物冲击负荷增大时出厂水的生物风险增加。当前缺少对该净水工艺单元中细菌、真菌和病毒类群结构的全面分析,对水处理过程中常见致病菌和条件致病菌比对分析方法、风险微生物的高通量快速检测方法及病毒类群结构的分析方法研究较少,对风险微生物爆发时应急消毒方法和主要生物代谢产物预测方法的相关研究不能满足出厂水生物安全保障的需求。对此,本课题主要研究了以下内容:
研究采用生物多样性测序的方法对全年各工艺单元出水中微生物群落结构进行分析,共获得43个门、832个属细菌和6个门、227个属真菌的生物信息,并依此研究水处理过程中各单元出水细菌和真菌群落的时空变化、水质参数对细菌群落和真菌群落的影响。研究表明:净水工艺单元较季节性因素对水中细菌和真菌群落的影响明显,相邻工艺单元出水中细菌和真菌群落构成更相似;水质参数中温度、总磷、总氮、氨氮、CODMn等水质参数对各净水工艺单元出水中细菌群落和真菌群落的影响较大;净水工艺单元中,臭氧氧化单元和消毒单元对微生物的去除效果好;炭滤单元微生物群落结构复杂,丰度分布更均匀,炭滤单元是水处理过程微生物泄露风险的主要来源。
研究建立了包含352种常见致病菌和条件致病菌的16SrDNA全长基因数据库及比对方法。研究发现,全年各工艺单元出水中可比对出33个种的常见致病菌和条件致病菌的16SrDNA序列,占测序获得全部16SrDNA序列数的21.08%,B.cenocepacia、C.botulinum、NMEC等致病菌和条件致病菌的16SrDNA一直存在于各工艺单元出水中,且维持较高丰度;选择性培养基验证培养说明了16SrDNA基因比对方法的有效性和局限性,研究可知在高温季节各工艺单元出水中可能存在少量的致病菌和条件致病菌,种类相对较多,低温季节也可能有少数致病菌和条件致病菌,如:N.meningitidis和C.thermocellum等存在,应予以重视;臭氧氧化单元和炭滤单元对致病菌和条件致病菌种类和丰度的影响较大:炭滤单元使得低丰度致病菌和条件致病菌的丰度升高,其出水中存在新的致病菌和条件致病菌16SrDNA基因片段,这些基因片段可能源于生物活性炭上积累的微生物群落。研究以SISPA-PCR和病毒宏基因组测序为基础,对原水和出厂水病毒的多样性进行分析。正常情况下,原水中病毒滴度极低,经106倍浓缩后,方获得了病毒的基因组用于测序和分析,病毒宏基因组测序分析表明原水中可比对出的病毒结构复杂,包括:ssDNA病毒、dsDNA病毒、线状DNA病毒、线状和环状RNA病毒等病毒结构,这些病毒的基因序列可定义到3个病毒目(Caudovirales、Herpesvirales、Ligamenvirales),包含部分人类病毒(Spumavirus等)、动物病毒(Asfarviridae等)、植物病毒(Eragrovirus等)和噬菌体(T4likevirus等)等病毒的基因信息;在病毒基因组中丰度较高的病毒属为Microvirus占18.16%;研究增加浓缩出厂水的样本量,但未获得病毒基因组,说明常规和O3-BAC水处理工艺去除病毒的效果较好。
研究采用生物多样性测序和基因组测序的方法研究炭滤单元对微生物群落的影响。研究表明:炭滤单元出水中可能存在的常见致病菌和条件致病菌主要来源于该单元进水,生物活性炭对常见致病菌和条件致病菌种类的影响不明显;但可使部分致病菌和条件致病菌的丰度发生明显升高或降低,给炭滤单元出水中可能存在的致病菌和条件致病菌分析带来不确定性。在炭滤池反冲洗结束初期,炭滤单元出水中可能存在的致病菌和条件致病菌丰度增加,消毒负担加重。生物活性炭的宏基因组测序说明:生物活性炭上不但包括细菌、古菌、真菌和病毒,还包括部分原生动物门和棘皮动物门的生物,既有降解有机物功能的基因,又有引起人类疾病和代谢对人体有害物质的基因。
研究建立了19种常见致病菌(B.cenocepacia、Staphylococcusaureus等)的快速高通量检测方法,采用向后逐步回归分析法利用响应面模型建立常见致病菌(金黄色葡萄球菌)爆发时消毒模型;采用人工神经网络建立了2-甲基乙莰醇的预测模型。研究为净水厂出现事故时和原水中微生物爆发时致病菌的快速检测、消毒工艺调整和生物代谢产物预测提供基础。
本文对常见净水工艺——常规和O3-BAC深度水处理工艺微生物安全的研究更加深入,相关研究成果对保障饮用水的生物安全有积极的意义。
研究采用生物多样性测序的方法对全年各工艺单元出水中微生物群落结构进行分析,共获得43个门、832个属细菌和6个门、227个属真菌的生物信息,并依此研究水处理过程中各单元出水细菌和真菌群落的时空变化、水质参数对细菌群落和真菌群落的影响。研究表明:净水工艺单元较季节性因素对水中细菌和真菌群落的影响明显,相邻工艺单元出水中细菌和真菌群落构成更相似;水质参数中温度、总磷、总氮、氨氮、CODMn等水质参数对各净水工艺单元出水中细菌群落和真菌群落的影响较大;净水工艺单元中,臭氧氧化单元和消毒单元对微生物的去除效果好;炭滤单元微生物群落结构复杂,丰度分布更均匀,炭滤单元是水处理过程微生物泄露风险的主要来源。
研究建立了包含352种常见致病菌和条件致病菌的16SrDNA全长基因数据库及比对方法。研究发现,全年各工艺单元出水中可比对出33个种的常见致病菌和条件致病菌的16SrDNA序列,占测序获得全部16SrDNA序列数的21.08%,B.cenocepacia、C.botulinum、NMEC等致病菌和条件致病菌的16SrDNA一直存在于各工艺单元出水中,且维持较高丰度;选择性培养基验证培养说明了16SrDNA基因比对方法的有效性和局限性,研究可知在高温季节各工艺单元出水中可能存在少量的致病菌和条件致病菌,种类相对较多,低温季节也可能有少数致病菌和条件致病菌,如:N.meningitidis和C.thermocellum等存在,应予以重视;臭氧氧化单元和炭滤单元对致病菌和条件致病菌种类和丰度的影响较大:炭滤单元使得低丰度致病菌和条件致病菌的丰度升高,其出水中存在新的致病菌和条件致病菌16SrDNA基因片段,这些基因片段可能源于生物活性炭上积累的微生物群落。研究以SISPA-PCR和病毒宏基因组测序为基础,对原水和出厂水病毒的多样性进行分析。正常情况下,原水中病毒滴度极低,经106倍浓缩后,方获得了病毒的基因组用于测序和分析,病毒宏基因组测序分析表明原水中可比对出的病毒结构复杂,包括:ssDNA病毒、dsDNA病毒、线状DNA病毒、线状和环状RNA病毒等病毒结构,这些病毒的基因序列可定义到3个病毒目(Caudovirales、Herpesvirales、Ligamenvirales),包含部分人类病毒(Spumavirus等)、动物病毒(Asfarviridae等)、植物病毒(Eragrovirus等)和噬菌体(T4likevirus等)等病毒的基因信息;在病毒基因组中丰度较高的病毒属为Microvirus占18.16%;研究增加浓缩出厂水的样本量,但未获得病毒基因组,说明常规和O3-BAC水处理工艺去除病毒的效果较好。
研究采用生物多样性测序和基因组测序的方法研究炭滤单元对微生物群落的影响。研究表明:炭滤单元出水中可能存在的常见致病菌和条件致病菌主要来源于该单元进水,生物活性炭对常见致病菌和条件致病菌种类的影响不明显;但可使部分致病菌和条件致病菌的丰度发生明显升高或降低,给炭滤单元出水中可能存在的致病菌和条件致病菌分析带来不确定性。在炭滤池反冲洗结束初期,炭滤单元出水中可能存在的致病菌和条件致病菌丰度增加,消毒负担加重。生物活性炭的宏基因组测序说明:生物活性炭上不但包括细菌、古菌、真菌和病毒,还包括部分原生动物门和棘皮动物门的生物,既有降解有机物功能的基因,又有引起人类疾病和代谢对人体有害物质的基因。
研究建立了19种常见致病菌(B.cenocepacia、Staphylococcusaureus等)的快速高通量检测方法,采用向后逐步回归分析法利用响应面模型建立常见致病菌(金黄色葡萄球菌)爆发时消毒模型;采用人工神经网络建立了2-甲基乙莰醇的预测模型。研究为净水厂出现事故时和原水中微生物爆发时致病菌的快速检测、消毒工艺调整和生物代谢产物预测提供基础。
本文对常见净水工艺——常规和O3-BAC深度水处理工艺微生物安全的研究更加深入,相关研究成果对保障饮用水的生物安全有积极的意义。