论文部分内容阅读
土壤是人类生产与生活最重要的自然资源之一,对人类的生存与发展至关重要。目前,我国耕地面临着土壤质量退化严重、重金属污染等突出问题,严重威胁农作物产量与粮食安全。而传统的耕地质量监测手段存在经济成本高、效果差、时效性低等问题,应用高光谱遥感技术能够实现周期性、大尺度、高精度的耕地质量监测,是当前的研究热点之一。目前基于高光谱遥感技术的土壤成分反演研究,主要借助传统的统计学习方法构建土壤质量反演模型,存在小样本数据量导致的过拟合现象,并且难以获取具有反演机理解释性的敏感波段,同时也缺乏基于物理模型的去除土壤成分干扰因子光谱校正模型。针对此问题,论文在深入研究Kubelka-Munk理论的基础上,获取泛化性强的土壤有机质光谱特征,构建了消除土壤水分影响的光谱校正模型,阐释了航空高光谱数据在土壤有机质反演中的水分影响因子,提升了土壤有机质反演的精度。最后,结合半监督学习与深度学习算法,构建了土壤有机质、土壤重金属As和Cr的反演模型,并重点分析了土壤成分在研究区域的空间分布特性。本文的主要研究内容和贡献包括:(1)为获取有效的土壤有机质敏感光谱信息,提出基于Kubelka-Munk(KM)理论厚度修正的土壤有机质反演模型。首先设计了基于K-M理论的土壤厚度观测实验,通过选取不同的实验样本与不同材料的背景容器,研究土壤厚度与背景容器材料对光谱的影响。结合室内测量光谱数据,对基于K-M理论的厚度方程进行修正,并利用修正后的厚度方程求取不同有机质含量的土壤样本相应的散射系数和吸收系数。将散射系数与土壤有机质含量进行线性拟合,获得在2.197μm处的有机质成分敏感波段。该方法合理解释了土壤有机质含量对光谱特征的影响机理,同时基于此敏感波段的有机质含量反演具有显著的精度优势,绝对系数精度高达0.97。(2)由于土壤水分对有机质在光谱上的敏感信息表现造成较大影响,针对基于航空高光谱数据的大范围土壤有机质反演制图,提出了基于K-M理论的土壤水分去除光谱修正模型,以提高土壤有机质在成像光谱数据上的特征表达。首先利用混合像元分解方法提取研究区耕地的光谱信息,然后结合基于K-M理论的土壤含水量模型实现研究区土壤含水量反演,最后利用基于朗伯-比尔定量描述的土壤光谱与土壤含水量模型构建水分去除光谱修正算法。结果表明,提出的土壤水分去除光谱修正模型能够有效地消除机载高光谱影像中土壤水分的影响,突出土壤有机质的光谱敏感特征,特别是能够显著提升短波红外范围的光谱特征表达。但对土壤重金属的特征提升则不明显,甚至是降低其相关性。利用水分去除后的成像光谱数据在0.6918)处敏感波段进行反演,并与支持向量机等回归建模比较。结果表明,提出的水分去除光谱修正模型能够有效提升成像高光谱数据有机质反演精度,物理模型精度至少提升22%,统计回归方法精度至少提升19%。最后,通过地形湿度指数和河网提取方法综合分析了土壤有机质的分布特征与地形影响。(3)土壤中重金属含量较小,难以构建有效的物理反演模型。而传统统计方法需要充足的样本数量以保证精度要求,在小样本反演任务中则会出现精度较低等问题,提出了半监督深度回归模型(Semi-DNNR),以保证小样本条件下的土壤有机质、土壤重金属As和Cr含量的反演精度。首先构造深度回归网络进行深层特征提取,并结合一种新的特征组合策略,优化传统特征选择方法以解决特征的随机性缺陷。以地理学第一定律为指导,将空间邻近度策略引入半监督样本增选过程,以保证增选样本伪标签精度的同时扩增训练样本容量,解决深度回归过程中由于小样本数据训练而导致的过拟合问题。最后在半监督深度回归模型中加入伪样本动态自更新和模型参数共享机制来提升深度回归网络的参数微调能力。与传统回归方法的反演结果进行精度对比,半监督深度回归模型具有显著的精度优势,土壤有机质、土壤重金属As和Cr含量预测集精度分别是0.71、0.82和0.63。最后,参考研究区实地调研和整理收集的统计数据,结合土壤成分空间分布信息进行污染来源分析,土壤重金属As的空间分布与土壤有机质对As的吸附与络合作用有关,导致As也具有土壤有机质相似的聚集效应。