论文部分内容阅读
2016年3月28日云南异步联网工程试验中出现了20世纪70年代常出现在水电机组供孤立负荷系统的超低频振荡现象,给人们敲起了警钟,重新引起了电力从业者和研究者对电力系统频率闭环问题的关注。研究电力系统频率闭环问题通常采用简单的单机一次调频过程研究模型或多机等值单机模型。采用该模型的适用性尚缺乏严格的数学证明,且该研究模型无法反映励磁系统和电力系统稳定器(PSS)的作用。如何从电力系统全系统详细模型中得到该振荡模式的研究模型,揭示其数学本质和物理意义并提出解决措施,是目前的研究热点。本文首次从数学理论上严格地证明了电力系统频率闭环问题的研究模型。由于解决这一问题最有效的办法是对处于频率闭环中的调速系统进行设计,因此本文也提出调速器独立协调设计方法以抑制电力系统频率闭环失稳。同时,电力系统稳定器可用于抑制电力系统低频振荡(功角振荡),那么能否应用在抑制超低频振荡上,本文将对此作出回答,并提出抑制频率闭环失稳的PSS设计方法。
本文的主要工作和创新成果如下:
1)研究了超低频振荡的产生机理以及关键影响因素。首次从单机供孤立负荷系统的具体公式推导中,证明了超低频振荡与低频振荡/功角振荡是不相干的两个问题,两者分别是频率闭环问题和功角闭环问题。发现了频率闭环稳定的影响因素,为本文的研究框架打下了夯实的基础;同时,也对目前的一些论点进行了讨论,包括阻尼转矩法是否能直接用于分析调速系统在频率闭环的作用。
2)本项目从多机电力系统转子动态模型出发,利用线性变换得到包含转子共同运动模式及转子相对运动模式的状态方程,并基于不变流形理论的模型降阶方法和新状态方程状态矩阵的特性,对转子共同运动模式及转子相对运动模式进行了解耦,解耦得到了多机系统频率闭环问题的研究模型,首次从数学理论上严格地证明了电力系统频率闭环问题的研究模型。
3)对于防止多机系统频率闭环失稳的多调速器参数优化问题,本文基于奈奎斯特稳定判据和奈奎斯特图的数学意义,推论出保证并列传递函数单位反馈闭环系统稳定的充分条件,并基于该推论提出了防止多机系统频率闭环失稳的多调速器参数独立协调优化方法。
栴)基于ModalInducedTorqueCoefficients(MITC)理论将多机电力系统全模型降阶到多机电力系统转子动态模型,根据该降阶结果且结合多机电力系统转子动态模型降阶到多机系统频率闭环模型的降阶过程,提出了抑制多机系统频率闭环失稳的电力系统稳定器(PSS)设计方法。
本文从数学理论、电力系统建模以及物理意义三个角度论证了超低频振荡(频率闭环稳定)问题的本质,并严格地推导出防止电力系统多机系统频率闭环失稳的多调速器独立设计方法和电力系统稳定器(PSS)设计方法。本文从建模、分析及控制等角度形成一整套对电力系统频率闭环问题的研究方法和解决措施。
本文的主要工作和创新成果如下:
1)研究了超低频振荡的产生机理以及关键影响因素。首次从单机供孤立负荷系统的具体公式推导中,证明了超低频振荡与低频振荡/功角振荡是不相干的两个问题,两者分别是频率闭环问题和功角闭环问题。发现了频率闭环稳定的影响因素,为本文的研究框架打下了夯实的基础;同时,也对目前的一些论点进行了讨论,包括阻尼转矩法是否能直接用于分析调速系统在频率闭环的作用。
2)本项目从多机电力系统转子动态模型出发,利用线性变换得到包含转子共同运动模式及转子相对运动模式的状态方程,并基于不变流形理论的模型降阶方法和新状态方程状态矩阵的特性,对转子共同运动模式及转子相对运动模式进行了解耦,解耦得到了多机系统频率闭环问题的研究模型,首次从数学理论上严格地证明了电力系统频率闭环问题的研究模型。
3)对于防止多机系统频率闭环失稳的多调速器参数优化问题,本文基于奈奎斯特稳定判据和奈奎斯特图的数学意义,推论出保证并列传递函数单位反馈闭环系统稳定的充分条件,并基于该推论提出了防止多机系统频率闭环失稳的多调速器参数独立协调优化方法。
栴)基于ModalInducedTorqueCoefficients(MITC)理论将多机电力系统全模型降阶到多机电力系统转子动态模型,根据该降阶结果且结合多机电力系统转子动态模型降阶到多机系统频率闭环模型的降阶过程,提出了抑制多机系统频率闭环失稳的电力系统稳定器(PSS)设计方法。
本文从数学理论、电力系统建模以及物理意义三个角度论证了超低频振荡(频率闭环稳定)问题的本质,并严格地推导出防止电力系统多机系统频率闭环失稳的多调速器独立设计方法和电力系统稳定器(PSS)设计方法。本文从建模、分析及控制等角度形成一整套对电力系统频率闭环问题的研究方法和解决措施。