论文部分内容阅读
无线传感器网络(Wireless Sensor Networks,WSNs)由于布设成本低、使用灵活、部署广泛等优势获得工业测控领域的高度重视。根据对网络性能要求从低到高,国际自动化协会将工业应用分为监视、控制和生产安全三个等级。市场调研公司ON World关于工业无线传感器网络(Industrial Wireless Sensor Networks,IWSNs)的最新报告,以及IEEE旗舰期刊Proceedings在2016年对IWSNs技术的专题综述论文指出:目前IWSNs主要应用于对网络性能要求较低的监视级应用,在实时监控、生产安全等高级应用方面仍然面临诸多挑战,急需开展深入研究,是未来发展的重要方向。因此本文重点研究面向实时监控、生产安全和移动场景等高级工业应用的新型IWSNs网络架构和链路资源调度,主要成果和创新点如下:
1.为了支持高级工业应用对网络性能的苛刻要求,本文借鉴智慧协同网络的架构思想,提出基于资源适配的IWSNs网络架构,通过对网络组件资源的精细划分,设计了资源适配协议以及控制与数据传输通道分离机制,实现工业应用与网络资源的适配,满足高级工业应用的网络性能需求。同时,本文在实际工业应用中搭建原型系统,为后续章节研究内容的部署和验证奠定基础。
2.为了提高IWSNs多跳传输的可靠性,提出基于退让时隙的单路径重传资源调度算法。本文首先分析了现有共享时隙竞争机制的低可靠性,然后采用空闲信道评估和信道占用机制,设计了退让时隙组件,避免共享时隙竞争。其次,考虑数据包在多跳路径中重传的连续性和所需的空闲时隙,提出了基于数据流的连续时隙分配算法,提高资源利用率。最后,理论分析了不同资源调度策略的可靠性,并且在不同链路环境下对比实验。结果表明,随着链路丢包率的升高,本文提出的资源调度算法在足够共享时隙数量的情况下数据包接收率也能够达到99%以上,同时能够获得较高的时隙利用率和较低的节点能量消耗。
3.多路径重传可有效提高IWSNs的可靠性,然而工业应用的实时性要求导致其调度成功率非常低。为此,本文提出一种基于多约束条件的多路径干扰避免资源调度算法。本文首先在数据传输周期多样化和信道受限的情况下,分析了时隙和信道资源调度的约束条件。其次,考虑到资源分配时所需遵循的路由顺序,提出了链路传输生成算法,并且通过分析多样化周期和多路径带来的资源调度干扰,采用速率单调策略、多接入点和重用共享时隙,提出了多路径干扰避免资源调度算法。最后通过仿真表明,本文提出的调度算法能够扩大网络规模,提升调度成功率,同时通过实验证明,本文算法能够保障数据传输的可靠性,并且降低数据传输的平均时延。
4.工业生产安全应用要求网络能以最高的优先级处理突发紧急数据,需要IWSNs支持不同优先级的数据处理,然而现有IWSNs研究缺乏QoS支持。为此,本文提出基于紧急事件触发的优先接入控制机制。面向生产安全应用,本文首先建立了IWSNs事件触发故障保护模型。通过设计周期数据传输、紧急告警和紧急信息传输的时隙组件,本文提出了一种优先接入控制机制,分别实现事件触发、资源抢占和数据实时传输,从本质上解决了网络中周期数据与突发紧急数据并存的资源调度问题。本文理论分析了该机制的实时性能,在实际焊接工厂中搭建故障保护系统进行对比实验,证明了本文机制对突发紧急数据传输的实时性能优势,并且在故障探测设备汇报周期较大的情况下可以减少带宽的使用。
5.目前IWSNs主要应用于固定场景,但移动性支持是未来高级工业应用的发展趋势。因此,针对节点移动导致的数据失效问题,本文提出一种基于模糊逻辑控制的无缝移动切换策略。本文通过实际测试分析易获取的数据链路层参数,分别组建了三种移动切换触发评估参数,提出了基于模糊逻辑控制器的移动切换触发判决机制,减少了误切换和迟切换。为了降低移动节点的数据失效率以及减少链路注册次数,本文提出了一种基于分段时隙资源调度方案的无缝移动切换算法,该算法使得移动节点能够动态调度共享通信资源,实现移动过程中的数据传输,并在移动过程中进行移动状态评估,避免频繁链路注册。实验表明,相比于传统移动切换机制,本文策略能够有效降低移动节点的数据包丢失率和失效率以及能量消耗。
1.为了支持高级工业应用对网络性能的苛刻要求,本文借鉴智慧协同网络的架构思想,提出基于资源适配的IWSNs网络架构,通过对网络组件资源的精细划分,设计了资源适配协议以及控制与数据传输通道分离机制,实现工业应用与网络资源的适配,满足高级工业应用的网络性能需求。同时,本文在实际工业应用中搭建原型系统,为后续章节研究内容的部署和验证奠定基础。
2.为了提高IWSNs多跳传输的可靠性,提出基于退让时隙的单路径重传资源调度算法。本文首先分析了现有共享时隙竞争机制的低可靠性,然后采用空闲信道评估和信道占用机制,设计了退让时隙组件,避免共享时隙竞争。其次,考虑数据包在多跳路径中重传的连续性和所需的空闲时隙,提出了基于数据流的连续时隙分配算法,提高资源利用率。最后,理论分析了不同资源调度策略的可靠性,并且在不同链路环境下对比实验。结果表明,随着链路丢包率的升高,本文提出的资源调度算法在足够共享时隙数量的情况下数据包接收率也能够达到99%以上,同时能够获得较高的时隙利用率和较低的节点能量消耗。
3.多路径重传可有效提高IWSNs的可靠性,然而工业应用的实时性要求导致其调度成功率非常低。为此,本文提出一种基于多约束条件的多路径干扰避免资源调度算法。本文首先在数据传输周期多样化和信道受限的情况下,分析了时隙和信道资源调度的约束条件。其次,考虑到资源分配时所需遵循的路由顺序,提出了链路传输生成算法,并且通过分析多样化周期和多路径带来的资源调度干扰,采用速率单调策略、多接入点和重用共享时隙,提出了多路径干扰避免资源调度算法。最后通过仿真表明,本文提出的调度算法能够扩大网络规模,提升调度成功率,同时通过实验证明,本文算法能够保障数据传输的可靠性,并且降低数据传输的平均时延。
4.工业生产安全应用要求网络能以最高的优先级处理突发紧急数据,需要IWSNs支持不同优先级的数据处理,然而现有IWSNs研究缺乏QoS支持。为此,本文提出基于紧急事件触发的优先接入控制机制。面向生产安全应用,本文首先建立了IWSNs事件触发故障保护模型。通过设计周期数据传输、紧急告警和紧急信息传输的时隙组件,本文提出了一种优先接入控制机制,分别实现事件触发、资源抢占和数据实时传输,从本质上解决了网络中周期数据与突发紧急数据并存的资源调度问题。本文理论分析了该机制的实时性能,在实际焊接工厂中搭建故障保护系统进行对比实验,证明了本文机制对突发紧急数据传输的实时性能优势,并且在故障探测设备汇报周期较大的情况下可以减少带宽的使用。
5.目前IWSNs主要应用于固定场景,但移动性支持是未来高级工业应用的发展趋势。因此,针对节点移动导致的数据失效问题,本文提出一种基于模糊逻辑控制的无缝移动切换策略。本文通过实际测试分析易获取的数据链路层参数,分别组建了三种移动切换触发评估参数,提出了基于模糊逻辑控制器的移动切换触发判决机制,减少了误切换和迟切换。为了降低移动节点的数据失效率以及减少链路注册次数,本文提出了一种基于分段时隙资源调度方案的无缝移动切换算法,该算法使得移动节点能够动态调度共享通信资源,实现移动过程中的数据传输,并在移动过程中进行移动状态评估,避免频繁链路注册。实验表明,相比于传统移动切换机制,本文策略能够有效降低移动节点的数据包丢失率和失效率以及能量消耗。