袜品图像特征提取与制版文件生成技术研究

来源 :西安理工大学 | 被引量 : 0次 | 上传用户:qq273683019
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着新一代信息技术的创新发展,袜业制造行业从传统的手工生产逐步向数字化、智能化和柔性化的方向转型,但在袜品反求生产领域尚处在传统的人工打样阶段。本文结合袜子制版文件特征与图像特征提取技术的发展现状,将三维立体袜品转换为正反面拼接的数字图像,对样板袜品进行图像采集、袜子制版文件反求、袜子制版文件二次设计等功能设计,研发一种数字化、自动化的袜子制版文件反求生成系统。本文的主要研究内容如下:(1)基于颜色、形状特征对袜筒分割算法进行设计。通过颜色特征提取实现了袜子正反标准图像中的罗口定位和坐标提取;通过区域面积的形状特征描述实现了直袜板标准图像中矩形袜筒的提取;通过图像掩膜实现了曲袜板标准图像中袜筒的提取,设计了基于区域划分的微分校正方法将曲袜筒变形得到矩形袜筒;(2)基于像素融合对袜子制版文件反求生成算法进行设计。基于灰度匹配拼接算法、最小方差量化法,分别生成基于直、曲袜板的袜子制版图像;基于像素融合的方法对以上两种袜子制版文件进行像素融合生成的像素完整的袜子制版文件;对其轮廓线提取进行评估,从3种袜子制版文件中选择与样板袜品最贴合的作为反求生成的袜子制版文件。(3)对图像的图案、颜色二次设计算法进行设计。在建立图案基元、颜色数据库的基础上,基于区域生长算法选定设计区域,对袜子制版文件进行图案、颜色二次设计;(4)利用MATLAB R2017b软件平台中的图像处理工具箱、APP Designer对袜子制版文件反求生成系统进行应用程序开发,实现袜子制版文件的反求与二次设计。该系统经实验验证,满足袜子制版文件的反求生成功能,可去除企业打样环节,缩短袜品的生产周期。在反求生成的袜子制版文件基础上进行二次设计,丰富了袜品的图案样式,使得袜子反求生产更加数字化、柔性化和智能化。
其他文献
运算不仅是"数与代数"的核心内容,也与其他领域密切关联。数的运算是学生学习数学的基础,是每个学生必须具备的核心素养之一。教学中应重视理解数与运算的意义,在通透算理的基础上掌握算法,关注灵活运用简便算法,从而培养学生的运算能力。
随着社会的飞速发展、科技的不断进步和人民生活质量的提高,传统劳动密集型产业普遍出现劳动力紧缺、人工成本增高和急需生产技术研发升级的问题。本文针对浙江省永新集团建设智能袜业示范园区的目标,总结分析现如今袜业生产现状以及其存在的问题,提出了袜业智能生产线开发研究的总体思路以及生产线的生产工艺流程方案,设计研发出袜业智能车间设备的总体布局方案以及生产调度系统,对完成生产线需要的关键设备进行了研发设计,并
流数据具有实时、连续、动态变化的特点,其广泛存在于网络监测、金融交易以及传感器检测等领域。从流数据中挖掘信息、发现规律,并对系统行为进行分析,预测未来的变化趋势,可以提高生产生活中的决策和评判效率,具有重要意义。流数据海量实时的特点,要求处理系统需具备高负荷的处理能力。基于CPU(Central Processing Unit)的串行处理是当前处理流数据的主要方式。串行方式不仅耗时长,而且难以达到
针对袜企目前打样周期长、与袜品卖家沟通时间长等问题,探索对三维电子袜样的仿真模拟技术及相关软件开发。本人以Pierce模型为基础,对纬编针织物单位线圈进行建模,再对其组织结构进行分析研究,在Visual Studio环境下,使用VC++语言,借助3dsmax工具实现了三维电子袜样的模拟。模拟结果很好地表现了纬编针织组织在空间中的串套关系,同时直观展示了袜品的三维编织效果。主要完成了以下工作:(1)
随着深度学习与人工智能技术的不断发展,人体行为识别技术得到了越来越多的关注,其广泛应用于人机交互、无人商店、安防监控、病人护理、虚拟现实等领域。行为识别的目标是从场景中的视频图像序列中对人体动作进行理解分析,准确高效显得尤为关键。因深度传感器可有效的避免受到光照、遮挡,环境变化等因素的影响,基于骨骼数据的行为识别方法在模式识别领域成为了热门研究方向。在近几年的研究中,将人体姿态建模为时空图结构的图
陕西凤翔木版年画作为中国传统民间美术代表之一,发源于西北民间,其画面形象和色彩风格均是数百年来关中民间百姓审美取向的体现,因此具有独树一帜的民间艺术风格和浓郁的关中地方特色,也因此吸引了无数爱好者。近年来,伴随着我国对民间艺术传承与发展重视性的提高以及人民群众对民间传统艺术的欣赏,凤翔木版年画不仅在国内名声赫赫,并且走出国门走向世界,受到众多海外艺术家和爱好者的赞美,并且被国内外许多研究单位、艺术
行人重识别技术(Person re-idcntification,re-id)是一种利用计算机视觉技术来准确判断图像或者视频序列中是否存在特定行人的技术,一般认为这是图像检索的子问题。近年来深度学习的不断发展使得行人重识别技术取得了极大地成功,该技术也在智能安防和智能监控等领域得到广泛应用。由于行人容易受到姿态变化、视角改变、复杂背景以及遮挡等方面的影响,使得行人难以被识别和检索,目前存在许多亟待
随着人工智能的快速发展,行人动作识别在视频监控、人机交互、动作分析及智能安防等领域得到了越来越广泛的应用。传统的行人动作识别大都是基于RGB视频或图像进行识别,但由于目标遮挡、光照变化和背景复杂等问题,行人动作识别效果并不理想。随着Kinect等深度传感器的普及,基于骨骼点的行人动作识别受到了广泛关注。现阶段对RGB视频进行基于骨骼点的动作识别方法中,通常采用骨骼点检测网络和基于骨骼点的动作识别网
混合现实技术发展相对成熟,应用广泛。HoloLens混合现实眼镜作为混合现实代表设备之一,其空间映射技术通过使用SLAM和计算机视觉技术帮助用户完成空间定位、扫描和重建工作,然而其并未对反映真实空间物体表面形状的网格进行分割和识别,在混合现实应用中无法完成基于分割对象的高级语义交互。因此,本文提出基于HoloLens空间映射的三维场景分割和识别研究。利用HoloLens完成室内三维数据采集,制作数
一直以来,印刷品作为常见信息交流工具,广泛地应用于生产生活。但其极易被不法分子复制甚至篡改,对社会的知识产权安全和生产创新带来了极大的破坏。传统的数字水印技术是保护信息安全的一大措施,但应用范围有限,无法有效应对打印扫描攻击,同时还有透明性、嵌入容量较低的缺陷。如何开发出能够抵抗打印扫描攻击的水印算法成为社会研究热点。目前,变换域算法能够有效的解决这一现状,其中DWT变换后的LL分量具有较好的鲁棒