含硫量对石港矿煤自燃特性影响的实验研究

来源 :辽宁工程技术大学 | 被引量 : 0次 | 上传用户:huachao198977
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
煤自燃一直困扰煤矿的安全生产,我国许多矿区赋存有含硫煤,含硫煤自然发火是亟待解决的难题。为了研究不同含硫煤的自燃特性,为含硫煤矿自燃防治提供理论基础,论文从理论角度分析煤氧复合过程中的吸氧特性、以及热量积聚过程;通过热重实验和程序升温实验分析不同含硫煤的热效应、标志性气体生成规律及气体产生速率;再通过红外光谱实验分析不同含硫煤的主要官能团变化规律,揭示不同含硫煤自燃过程中的放热效应及气体产生的微观机理,探究硫对煤自燃特性的影响。不同含硫煤的热效应分析。通过热重实验得到不同含硫煤的TG-DTG-DSC曲线,从特征温度、放热量、活化能及燃烧特性指数展开分析,得出随着含硫量的增加,煤的特征温度点提前,反应起初放热量逐渐减少,燃烧阶段的放热量逐渐增加,在吸氧增重阶段及燃烧阶段的活化能逐渐减少;含硫量越高,煤的燃烧特性越强。不同含硫煤自燃过程中标志性气体生成规律及自燃参数测定的研究。通过分析不同含硫煤自燃过程中气体浓度随温度的变化规律得出,随着含硫量的增加,各类标志性气体的浓度逐渐增加,乙烯和乙炔气体出现的温度提前,煤的耗氧速率、CO和CO2产生速率随含硫量的增加而增大,高硫煤的氧化性更强。不同含硫煤宏观特性的机理分析。通过对主要官能团进行定性和定量分析,结果表明不同含硫煤所含的主要官能团种类基本一致,随着含硫量的增加,煤中的含氧官能团、脂肪烃及羟基的含量逐渐增多,芳香烃的含量逐渐降低。煤在反应初期的放热量较低主要由于-OH易被氧化而发生脱水反应,放热量小,CO产生过程吸热。煤在反应后期放热量逐渐增大主要由于脂肪烃侧链的-CH3、-CH2与氧直接反应放出大量的热。CO和CO2气体主要来自-CH3、-CH2-中C-H被氧攻击形成不稳定的-OH及煤本身的-OH脱水形成的C=O、-COOH发生反应产生的,烃类气体产生主要来自脂肪烃的断链。含硫量越高的煤样中脂肪烃、羟基及含氧官能团的含量较高,致使其氧化性较强,放热量较大,气体产量及产生速率较快。该论文有图33幅,表18个,参考文献88篇。
其他文献
有机-无机杂化钙钛矿材料家族已经成为传统光伏半导体中一种很有前途的替代品,以其突出的优势被认为是下一代能量收集的潜在候选者。在十多年的时间里,钙钛矿太阳能电池的功率转化效率从2009年的不足4%提高到目前的25.5%。但是另一方面,钙钛矿太阳能电池不足的环境稳定性对其商业化造成了巨大的障碍。近年来,二维Ruddlesden-Popper(RP)型钙钛矿以其优异的环境稳定性吸引了众多研究者的关注,被
学位
我国的煤矿安全生产遇到的难题大多数是煤矿的火灾,煤的自燃研究对保护生态环境、节约能源、使煤矿能够安全生产都具有重要的意义。本文以12种不同变质的原煤及其失去挥发分后的残渣为主要研究对象,通过红外光谱和热分析实验,在微观上研究煤中的活性基团对煤自燃机理的影响。傅里叶红外光谱实验(FTIR)中将原煤的光谱曲线分为羟基、C-H伸缩带、含氧官能团和芳香结构四个区域,分峰拟合原煤和挥发余分的光谱曲线,将二者
学位
近年来,以全无机金属卤素钙钛矿为代表的半导体材料,因其在载流子扩散长度、电荷迁移率与吸收系数等方面具有卓越的表现,同时制造成本低廉,成为光伏领域的主要研究材料。本文将微纳光学表征技术与金刚石对顶砧技术结合,系统地研究了压力依赖的CsPbBr3单晶微米片光致发光(PL)光谱、PL寿命光谱、吸收光谱以及光学图片,揭示了其内部应力、光学性质与晶体结构随压力的演化过程。本文主要做了如下工作:(1)利用化学
学位
道路交通事故被认为是当今世界最严重的问题之一,对人类生命和财产安全造成了极大威胁。城市道路交通系统是道路交通系统的重要组成部分,其安全水平直接关乎城市发展进程,因此,开展城市道路交通事故预防工作刻不容缓。交通事故影响因素分析及预测研究是事故预防工作中不可或缺的环节,有助于提前了解事故发展趋势,为预先采取针对性的管控措施提供理论支撑,有利于降低事故发生概率。本文首先借鉴经典事故致因理论的主张,分析了
学位
在我国有超过50%的煤矿存在自然发火危险,矿井自然发火占总发火次数的94%,而CO2是引发温室效应的主要气体之一。若将CO2用于煤矿井下防灭火工作,不仅可以减少煤矿中火灾事故的发生,也有利于煤层中瓦斯的抽采,同时起到了保护环境的作用。本文针对阳煤五矿8230工作面发火及现场液态CO2管路输送问题,利用Aspen plus对液态CO2在不同条件下长距离管道输送进行研究。研究成果如下:纯液态CO2物性
学位
碘酸钾(KIO3)是一种典型的钙钛矿型铁电材料,因其有较大的非线性光学系数和压电系数,可用于制造具有良好光学性能的非线性光学器件。作为独立于温度和化学组分的热力学参量,压力能够调整原子间距和原子间的成键方式,从而引发晶体结构相变和电子结构相变。相变后物质会表现出常压下不存在的新奇特性,从而拓展了材料的研究和应用领域。目前,KIO3的实验研究多集中在性质随温度的变化关系上,在高压下开展的KIO3性质
学位
锂-硫电池因其较高的理论比容量(1675 m Ah g-1)成为储能体系关注的焦点。硫作为正极活性物质,在自然界储量丰富,无毒,保证电池性能的同时也大大降低了电池的造价。然而,锂-硫电池也存在一些亟待解决的问题,比如,正极活性物质硫的低导电性,充放电过程中缓慢的氧化还原反应动力学以及不可避免的可溶性多硫化物(Li2Sn,4≤n≤8)穿梭效应。这些问题严重影响了锂-硫电池的商业化应用。其中,正极活性
学位
良好的通风系统可以降低矿山瓦斯等有毒有害气体浓度,排除污浊气体、湿气,为工作面输送新鲜空气。目前已有较多成熟的风流调控技术手段,常用的有引射器通风、风门、调节风窗等等,但都有一定的局限性,在一些条件较为复杂的巷道中难以实现风流调控,比如:在行人和行车频繁的巷道需要增阻调节、引射风流,在易变形巷道隔断风流,会出现影响行人、行车、物料运输,设施设备易损坏,管理不便等问题。空气幕作为新型风流调控技术,安
学位
煤炭产业是社会普遍认为的高危行业,需要足够多的安全投入来保障其安全生产,而企业的安全投入资源能否高效利用,能否得到足够多的产出,一直是企业所关心的问题。因此,在前人的研究基础上,继续深入对煤炭企业的安全投入效率研究具有重要的现实意义。本文运用安全投入相关理论系统地对企业安全投入的理论和内涵进行了分析,得出了煤炭企业安全投入与经济效益存在非线性关系,在此基础上以安全投入的规模、结构和制度为切入点分析
学位
近年来,金属卤化铅钙钛矿(APb X3)由于其优异的光电特性,例如高的吸收系数、载流子迁移率、缺陷容忍性和光致发光效率(PLQY)而备受关注,在太阳能电池、发光二极管(light-emitting diodes,LEDs)和光电探测器等光电领域表现出巨大的潜力。然而,化合物的不稳定性和Pb的毒性仍然是阻碍APb X3应用于商业化的两个关键性的问题。因此,寻找用无毒元素取代Pb元素并同时具有相似光物
学位