Banach空间二阶周期边值问题解的存在性

来源 :西北师范大学 | 被引量 : 0次 | 上传用户:yuanjin123456
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文讨论了Banach空间二阶周期边值问题解的存在性,其中b , c∈R.主要结果有:一、利用凸锥理论与上下解单调迭代方法,在有序Banach空间中,通过建立新的比较定理及对线性方程解算子范数的精确计算,得到了解的一些存在性与唯一性结果,这些结果改进和推广了已有的相关结论.二、借助§2中对线性方程解算子范数的精确估计,利用凝聚场的拓扑度,在较弱的条件下,获得了一些解的存在性与唯一性结论,使结论更具一般性.三、在一定的非紧性测度条件下,通过非紧性测度的精细计算,运用凝聚映射的不动点指数理论,得到了正解的存在性结果.
其他文献
在新文科建设语境下,表演人才培养仍然是学科建设的核心问题。从过往和当下存在的问题两个维度剖析可以发现,中国戏剧理论与实践存在严重脱节。这种现象在教学实践中特别突出,理论与实践近乎各行其是,理论天马行空,实践则"自生自灭",至今没有一套完整且切实可行的教材。文章指出,改变表演人才培养状况已刻不容缓,必须立足根本,在借鉴多元的前提下建设具有中国特色的理论及切合实际的表演教学体系。
量子色动力学(QCD)作为描述强相互作用的标准量子理论原则上是可以解决夸克禁闭问题,但是由于夸克作用的强耦合性,从QCD第一原理研究夸克禁闭比较困难,然而三十年前提出的对偶超导图像可以作为解释QCD中夸克禁闭的一般理论。本文中我们介绍了QCD、对称性自发破缺和联络分解。我们还对AH模型的动力学方程进行了推导,得到对偶G-L方程并对其进行了解析和数值求解,证明当n趋向无穷大时,涡旋趋于墙涡旋。最后把
本文研究具有阶段结构和非线性密度制约的HollingⅢ型捕食者-食饵交错扩散模型解的整体性态.全文共分四节.第一节讨论模型(1)的常微分方程组形式的非负平衡点的稳定性.第二至四节主要研究模型(1)满足齐次Neumann边界条件下解的整体性态.第二节研究弱耦合的反应扩散项的系统(1)(即(1)中的系数αij=0(i,j=1,2,3)).首先应用上下解方法证明该系统解的存在唯一性及其一致有界性,然后应
本文主要讨论具有阶段结构的Lotka-Volterra捕食者-食饵模型及竞争模型Ut=△(d1u+α11u2+α12uv+α13uw)+au-bu-cu2-duv,x∈Ω,t>0, Ut=△(d2u+α21uu+α22u2+α23uw)+u-v,x∈Ω,t>0, (1) Ut=△(d3w+α31uw+α32uw+α33w2)+w((?)e±u-w),x∈Ω,t>0解的整体性态,其中Ω是Rn中有界的
本文利用半序理论,非紧性测度,凝聚映射的不动点定理及锥上的不动点指数理论,讨论了Banach空间中积微分方程两点边值问题的解的存在性.其中本文的主要结果有:一、通过建立新的极大值原理,讨论Banach空间中非线性积微分方程两点边值问题解的存在性,在不假设Banach空间是弱序列完备的情况下,运用上下解的单调迭代方法,研究了积微分方程两点边值问题解的存在性.二、通过线性方程谱半径的论证,在紧性条件下
本文利用算子半群理论,研究了抽象发展方程ω-周期解的存在性,唯一性,正则性和渐近性态,这里假设A为扇形算子f:R×E→X连续,关于t以ω为周期,主要结果如下:一、借助于相应的线性发展方程ω-周期mild解的存在唯一性定理和正则性结果,建立了一般非线性发展方程ω-周期古典解存在的上下解定理,利用正算子半群的特征和单调迭代程序,获得了ω-周期古典解的存在性和唯一性定理.二、利用算子半群的性质和非线性项
本文讨论具有阶段结构的HollingⅡ型捕食者-食饵交错扩散模型解的整体性态,其中Ω(?)Rn为有界光滑区域,η是(?)Ω上的单位外法向量.全文共分四节.第一节讨论模型(1)的常微分方程组形式的非负平衡点的稳定性.第二节讨论弱耦合的反应扩散项的系统(1)(即(1)中的系数αij=0,i,j=1,2,3).首先证明该系统整体解的存在唯一性及其一致有界性,然后应用线性化方法和Lyapunov函数讨论其
本文利用锥上的不动点定理,上下解方法以及拓扑度相关不动点定理讨论了三阶常微分方程两点边值问题解的存在性及唯一性.本文的主要结果有:一、通过建立新的极大值原理,结合上下解的单调迭代方法获得了三阶两点边值问题极值解的存在性结论;进一步,若对非线性项f再增加一个适当的序条件,我们还可获得该问题解的唯一性结论.二、引入Lp—Caratheodory函数的概念,利用Leray-Schauder不动点定理讨论
团簇有效连接了原子尺寸和宏观块体,它具有极大的表体比,催化活性高,为研究各种化学反应提供了极好的平台。TiO2在催化等工业领域有重要的实际应用价值,特别是在一定条件下,可以光解离水分子产生清洁的氢气,对于缓解当前能源危机具有重要意义。因此对于TiO2团簇与小分子催化机理的研究成为了一个热点。针对TiO2团簇吸附水分子,本文主要开展了以下两个工作:利用遗传算法结合经验势函数搜索了(TiO2)n(n=
自旋系统中,对高温下有外场作用的SK模型的讨论是一项基本的研究.本文主要讨论如何将由Comets和Neveu在文献[3]所介绍的随机分析法更深入的推广到自旋玻璃的高温下有外场作用的SK模型中,通过应用这种方法我们得到一些结果.主要工作如下:一、我们讨论了得出主要结论所需要的一些必备结果,比如说高温下有外场作用的SK模型中Hamilton函数平均E[ρt(?HN,t(σ)]以及相关的一些结果.二、我