论文部分内容阅读
零差激光干涉测振技术是工业生产和科学研究中重要的振动检测手段。近年来,在航空航天、超精密制造工程等领域迅猛发展的推动作用下,振动测量的位移准确度在向纳米级、亚纳米级方向迈进。具有逆反射效应的微珠反射材料可以有效提高测量信号信噪比,然而测量光强度变化和激光散斑噪声依然会引入几纳米甚至微米级的位移测量误差,这是制约零差激光干涉测振仪准确度进一步提高的关键问题。本课题在深入分析传统零差激光干涉测振仪探测系统的基础上,建立基于微珠逆反射材料反射特性的测振干涉信号模型。分析了测量光强度和散斑噪声对测振解调位移准确度的影响机理,进而提出了一种基于平衡分光策略的周期非线性误差抑制方法、以及一种基于微邻域扫描的散斑噪声抑制方法,以期提高测振仪的准确度和稳定性。具体研究内容如下:为了明确微珠逆反射材料反射特性对零差激光干涉测振的误差作用机理,结合激光干涉理论和偏振光传输原理,建立了基于微珠逆反射材料反射特性的零差激光测振干涉信号模型。分析表明,测量光强变化时,探测系统分光不对等会引入可变的周期非线性误差,影响解调位移的准确度;散斑噪声会对测量光幅值和相位共同调制,进而引起解调位移的失真。从而明确实现探测系统的平衡分光和提高干涉信号振幅与相位的稳定性是提高测振准确度的关键因素。为了有效补偿测量光强度变化引入的可变的周期非线性误差,提出了一种基于平衡分光策略的周期非线性误差抑制方法。根据平衡分光策略设计平衡分光光路,抑制直流偏置误差并克服测量光强变化的干扰,提高后续周期非线性误差补偿的稳定性;在信号处理中对干涉信号的特征参数在线提取,利用多级流水式处理实现残余周期非线性误差的实时补偿,该方法仅含定点乘法运算,可提高补偿的实时性。另外,对于纳米级振幅振动的测量,利用光快门实现干涉信号特征参数的提取,据此补偿周期非线性误差。实验表明归一化测量光强由1变到0.1时,直流偏置误差始终被抑制在满信号幅值的5%以下;周期非线性误差引入的振动谐波强度由9 dB衰减至-26 dB;1 m/s振速范围内,测振解调位移的非线性误差峰峰值小于2.0 nm。为了有效抑制散斑噪声引入的测振解调位移失真,根据激光散斑噪声的统计学特性,提出一种基于微邻域扫描的散斑噪声抑制方法。利用测量光在被测点附近微小区域高速扫描测量,使散斑噪声被周期性调制;继而利用低通滤波实现信号的平均和平滑,滤除周期性的散斑噪声,使得探测器接收到的干涉信号幅值和相位趋于平稳,降低测振解调位移的失真度。实验结果表明,微珠逆反射目标表面缺陷处的解调位移失真度为58.3%,利用微邻域扫描的方法可将该值减小至3.4%。最后,以微珠逆反射目标为测量对象,本课题分别对平衡分光探测系统、周期非线性误差在线补偿方法、以及微邻域扫描散斑噪声抑制方法进行实验验证。实验结果表明,本文所提出的周期非线性误差补偿方法和散斑噪声抑制方法可以有效增强零差激光干涉测振仪的抗测量光强度和散斑噪声干扰能力,提高测振解调位移的准确性。