论文部分内容阅读
自动增益控制(AGC)电路是拓展射频接收机动态范围的重要途径。采用AGC电路的射频接收机只需较低位数的模数转换器(ADC)量化接收信号,镜像抑制、信号解调等操作均可搬移到数字域以更精确、更灵活的实现。伴随物联网发展兴起的短距离无线通信技术通常采用突发模式通信并且严格限制AGC的建立时间,限制了 AGC的结构,给设计高性能AGC电路带来了挑战。随着CMOS工艺的快速发展,信号处理数字化的优势更加明显,但是随之而来的电源电压下降等因素使得设计高性能AGC电路更为困难。AGC放大器的线性度决定了射频接收机动态范围的上限。从系统结构层面看,AGC的结构能够多大程度上发挥位于链路末级承担主要增益调谐任务的可编程增益放大器(PGA)的线性度是提高AGC放大器线性度的关键;从功能模块层面看,PGA本身的线性度直接决定AGC放大器可获得的线性度。面向短距离无线通信射频接收机,论文从快速建立AGC电路系统结构和高线性度PGA电路设计两个方面展开了研究。论文的主要工作和创新点总结如下:(1)提出一种基于对数检测器的前馈结构-采样数据反馈结构级联的AGC架构,利用对数检测器的高动态范围既保障了 AGC快速建立,又使得信号传输路径上固定增益放大器(FGA)的级数减到最少且开关个数只有1个,因而链路末级PGA的线性度能够得到充分利用;此外,所提出AGC结构只需简单拓展即可提供接收信号强度指示(RSSI)功能。(2)建立了高线性度跨导-跨阻结构PGA的电路模型,解释了 PGA的频率响应中可能出现尖峰的原因并直观的呈现出线性跨导级的非线性来源,基于此提出一个新型线性度增强PGA。它利用自适应控制电路抑制了相关小信号参数对输入信号的依赖,使线性度优化和避免增益尖峰两个目标一致化,还拓展了共模输入电压范围(CMIVR)。测试结果表明PGA的OIP3达到35dBm, CMIVRL比传统结构增加了 200mV。(3)提出低电源电压下利用主从控制技术抑制运算电流放大器(OCA)共模输入的方法,不需要通过维持高漏源电压保障电流源的输出阻抗。在1.2 V电源电压下设计了基于所提出的OCA的高线性度PGA,仿真结果表明OIP3达到26 dBm,驱动2 pF负载时带宽达到55 MHz且不随增益变化而变化。(4)研究了对数检测器的电路设计。提出针对CMOS对数转换器温度-工艺变化的两种补偿方法,分别利用了主从控制原理和跨线性环路提供的电流模乘法关系,测试结构表明,基于后者设计的CMOS对数转换器的温度系数小于350ppm。同时,从FGA拓展整流器检测范围的角度分析了连续检波对数放大器的原理,分析了非理想因素并总结了电路设计约束,研究了 FGA的低功耗电路实现。基于所提出的AGC系统结构,在CMOS 0.13 μm工艺和1.2 V电源电压下研究了 BLE射频接收机中AGC电路的设计与实现。测试结果表明:AGC电路的建立时间为6μs,可提供0—72 dB增益范围和2dB的增益步长,AGC放大器在最高增益和最低增益下的OIP3分别达到了 19 dBm和28dBm,提供了 63 dB的RSSI范围;整个AGC电路在1.2 V电源电压下消耗电流的典型值为1.1mA, BLE射频接收机可获取高达60dB的动态范围(0.1%BER)。