论文部分内容阅读
随着工业的快速迅猛发展,我国工业区的数量在快速增长,工业区污染治理的任务也越来越繁重。电镀园区的电镀废水成分复杂,处理难度大,必须进行单独处理,达到排放标准后才允许排放。本项研究主要对NC电镀工业园区综合污水的处理工艺方案进行研究,优选出科学合理的处理工艺,并进行工艺设计,为该电镀工业园区污水处理厂的建设提供技术支持。论文以NC电镀工业园区电镀废水处理工程为研究对象,通过比较确定该电镀工业园区电镀废水的处理工艺,并通过小试试验验证主要处理工艺单元的处理效果。研究内容包括综合电镀废水水量、水质的分析与确定;处理工艺方案的选择与分析;主要处理工艺单元的处理效果的实验验证;处理工艺的设计计算,运行效果分析与讨论。根据NC电镀工业园区的规划并类比其他电镀工业区,确定处理规模为1200m3/d;根据园区内已有企业水质的实测,并参考其他电镀企业的水质,确定含氰废水CN-=28.65mg/L;含铬废水 Cr6+=35.3mg/L;综合废水总锌=15.8mg/L,总铜=15.64mg/L,总镍=15.71mg/L。出水执行《电镀污染物排放标准》(GB21900-2008)。根据该电镀工业园区的水质特点和出水水质要求,采用含氰废水、含铬废水分别预处理,然后与综合废水一起处理的方案。含铬废水预处理采用化学还原法,含氰废水预处理采用二氧化氯氧化法,综合废水采用絮凝—沉淀—高效过滤的处理工艺。二氧化氯氧化除氰的验证试验结果表明,对于CN-含量为28.65mg/L的含氰废水,当二氧化氯与CN-的比为4:1时,CN-的剩余浓度为0.29mg/L,再增加投药量,处理效果提高不明显。还原法除铬的验证试验结果表明,对于Cr6+含量为35.26mg/L的含铬废水,当焦亚硫酸钠与Cr6+的比为4:1时,Cr6+的剩余浓度为0.18mg/L,再增加投药量,处理效果提高不明显。综合废水絮凝沉淀的验证试验结果表明,当PAM的投加量在1mg/L,PAC投加量为2.5mg/L时,COD的剩余浓度为80mg/L。建成后的试运行结果表明,NC电镀工业园区污水处理厂的出水指标分别为:总铬=0.5mg/L、总氰化物(以 CN-计)=0.26mg/L、总镍=0.43mg/L、总铜=0.42mg/L、总锌=1.3mg/L,达到设计出水水质要求。含铬废水预处理采用化学还原法,含氰废水预处理采用二氧化氯氧化法,综合废水采用絮凝—沉淀—高效过滤的处理工艺适合NC电镀工业园区废水的处理,处理后的水质达到了《电镀污染物排放标准》(GB21900-2008)。该园区污水处理厂的建设对保护当地环境具有重要意义。