基于SiC MOSFET的大功率LLC谐振变换器研究

来源 :合肥工业大学 | 被引量 : 0次 | 上传用户:zlmgwj006
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在基于中高压电网的光伏并网系统中,大功率DC/DC变换器作为关键部分,得到许多学者的关注。作为大功率DC/DC变换器的一员,LLC谐振变换器得到了大量的关注和应用,其功率器件电应力小、软开关范围宽、整机效率高。LLC谐振变换器可工作于两种工作状态,当其工作于LLC直流变压器(LLC DCT)状态时,需保持输入、输出电压的恒定增益比,对于变换器的工作区域选取、参数设计原则及控制策略有着不同的需求。在大功率LLC谐振变换器的应用中,高频变压器带来的涡流损耗问题加剧,在很大程度上影响到变换器的运行效率。采用利兹线进行高频变压器的设计能够有效减小集肤效应与邻近效应所带来的高频损耗,进而提升变换器效率,因而利兹线的选型是高频变压器设计的关键。得益于宽禁带半导体器件的发展,LLC谐振变换器的效率得以进一步提高,但宽禁带半导体器件的应用仍存在着亟待解决的问题。在基于SiC MOSFET的大功率LLC谐振变换器的研究中,SiC MOSFET由于其电流密度大,短路承受时间短,若系统发生短路故障时,SiC MOSFET不能快速保护关断,将瞬间损坏,降低系统的可靠性,同时造成经济的损失。本文以基于SiC MOSFET的大功率LLC谐振变换器为研究对象,进行下述研究:(1)针对光伏并网系统中,中转母线变换器功率等级大的特点,提出一拖四LLC谐振变换器拓扑,采用多路输出设计方法,减小光伏并网系统模组数量,降低系统成本。(2)针对LLC谐振变换器工作于LLC DCT状态的设计问题,对LLC谐振变换器的工作原理、增益特性、工作区域、参数设计及控制策略进行详细分析与说明,并进行仿真及实验验证。(3)针对大功率LLC谐振变换器中高频变压器的涡流损耗问题,利用Dowell模型进行变压器涡流损耗分析,确定变压器绕组利兹线的最优股数。借助100k W LLC谐振变换器平台,对不同变压器进行效率测试,验证股数选取方法的正确性和有效性。(4)针对LLC谐振变换器中SiC MOSFET的短路保护问题,通过实验对比两种短路保护方法的保护效果。针对三电平拓扑中SiC MOSFET因短路故障而过压、过流损坏这一问题,提出在NPC拓扑中引入大电容值飞跨电容,在实现所有开关管短路保护的同时,避免开关管过压损坏的风险,并通过短路测试进行验证。
其他文献
车辆荷载作为桥梁服役期间承受的重要荷载,当车辆行驶于桥面时会产生冲击作用,这种冲击作用一般用冲击系数来度量。冲击系数的合理取值不仅影响着桥梁建设的安全性与经济性,还可为桥梁服役期间的安全检测与评定提供依据。目前大多数冲击系数的研究只考虑桥梁跨中位置或极少数的几个位置,然而冲击系数最大值并不一定在桥梁跨中,考虑冲击系数沿全桥的分布情况会更符合实际。基于上述原因,本文研究了不同影响因素下简支梁桥和连续
新能源的大力发展为全球碳减排提供了一种有效可靠途径,以此为基础的微电网技术得到了广泛研究,其中交直流混合微电网因能整合新能源发电单元、储能以及不同类型负载而受到研究重视。本文以交直流混电网的协调控制研究为立足点,分析了交直流混合微电网拓扑类型以及交直流混合微电网目前研究的难点和重点,并针对交流和直流微电网中多储能荷电量均衡控制方法,无法适用于交直流混合微电网问题,提出了一种基于ILC的自适应系数双
严密防控环境风险、壮大节能环保、清洁能源、生态环境等产业是实施可持续发展的必经途径。近几十年来,风能、太阳能等可再生能源已经在众多国家得到广泛的关注与高效利用。然而新能源并网系统引入大量电力电子器件,由此带来的谐波谐振问题不容忽视。研究计及多逆变器并网谐振问题的等值模型成为当今电力系统暂稳态分析的重点。因此,本文针对光伏电站接入配电网的谐振抑制优化和多机并网等值建模分别进行了详细的研究分析。首先,
随着光伏电站的大规模投入使用,光伏电站并网所引起的电能质量问题成为一个研究热点。然而大部分的研究集中于如何监测光伏电站的电能质量,而研究从电站电能质量异常来溯源造成电能质量异常的因素,对于方便指导光伏电站运维人员排除电站异常具有更重要的工程意义。论文着眼于光伏电站并网电流的电能质量分析,探究引起电能质量异常的源头,主要工作及创新如下:(1)首先调研了光伏电站电能质量监测以及核心设备逆变器的故障诊断
电信号中多频率分量的幅值提取对于检测电网信号中的谐波分量,保证电力系统的安全经济运行;测量生物医学工程中的心电信号,反映脑部神经活动,研究脑部疾病;处理雷达探测时的回波信号,探测和识别检测目标等都具有重要意义。与电网中对电网信号进行谐波检测类似,托卡马克核聚变实验装置EAST(Experimental and Advanced Superconducting Tokamak)的运动斯塔克效应(MS
钢-混组合梁桥凭借其安全、经济、环保、高效的特点,广泛应用于中小跨径桥梁中。本文针对双主梁钢-混组合梁桥的车-桥耦合振动效应控制问题,以一座4×35 m连续双主梁钢-混组合梁桥为工程背景,设计了一种碰撞调谐质量阻尼器(pounding tuned mass dampers,PTMD),研究了基于PTMD的双主梁钢-混组合梁桥车-桥耦合振动效应控制,并深入研究了PTMD参数对其减振效果的影响。论文的
近年来我国公路隧道建设得到大力发展,隧道总里程持续增加。然而由于隧道结构的封闭性,机动车在行驶过程中所排放的一氧化碳、氮氧化物、颗粒物等污染物容易在隧道内产生积聚难以有效排除,隧道内的空气状况通常较差,可能导致隧道内人员健康问题。因此对隧道中流场与污染物扩散的研究具有一定实际意义。就公路隧道而言,机动车行驶所产生的交通风是影响隧道通风效果的一个重要因素,机动车尾气是隧道中污染物的主要来源,所以着重
随着我国电力行业的快速发展,电网架构日趋复杂,电网中安全稳定性的要求越来越高。变压器作为电力系统中的重要一环,其继电保护装置是作为设备安全稳定的一道重要防线。在变压器保护中,对内部故障以及励磁涌流的辨识是保障保护装置正确动作的关键。本文重点研究了基于J-A模型的变压器等效模型以及J-A模型与继电保护结合的保护方法。首先,分析了变压器励磁涌流的相关原理,介绍了单相变压器励磁涌流的数学模型。在建立模型
电网的安全稳定运行对保证社会生产生活的有序进行具有重要意义。随着电网规模的不断扩大,其复杂性也越来越高,这意味着电网的稳定性、安全性和可靠性正面临着巨大的挑战。分析近年来世界各地发生的大规模停电事故,可以发现这些事故的起因大多是:电网局部线路出现故障后,该线路保护装置动作使故障线路被切除,之后潮流发生大规模转移,致使正常线路过载并引发过负荷保护装置动作,从而引起连锁跳闸反应。因此,为提高电网的运行
超高性能混凝土(UHPC)材料具有较高的力学性能和耐久性能,在桥梁工程中有着广阔的应用前景。但如果桥梁结构全部采用UHPC材料则工程造价过高,为了充分发挥UHPC材料的优异性能、提高经济效益,研究能够同时使用UHPC材料和普通钢筋混凝土材料的新型UHPC-RC组合梁是推广UHPC材料在桥梁工程中实际应用的重要方法之一。本文以安徽省某高速公路跨线人行天桥所采用的一种全装配式UHPC-RC箱型组合梁为