以用户为中心的移动端体检数据可视化设计研究

来源 :华南理工大学 | 被引量 : 0次 | 上传用户:dakeke
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
疫情大环境下,健康管理的重要性日渐突出,体检是个人健康管理的重要组成部分,体检中的筛查项目能够在早期发现疾病,及时治疗和防预可以增加治愈的可能性。当前医疗机构提供的体检报告仍十分原始,纸质版和电子版均存在可读性不佳的问题,受检者阅读体验受限,无法全面读懂健康状况,对个人健康管理的执行造成阻碍。可视化是将人眼不敏感的数字、文字等信息图形化以提升视觉体验,是解决可读性不佳问题的有效手段。本课题从可视化角度出发,以提高体检报告可读性、提升用户体验为目的展开相关研究。通过体检相关文献阅读与分析,发现针对体检数据的研究仍集中在数据处理与系统应用上,几乎未从视觉层面对体检数据进行设计研究,笔者收集市场上已有的和概念性的体检相关移动端界面,将可视化形式分为轻微、功能性、设计性三类,目前存在以下不足:(1)同质化严重,可视化形式单一;(2)采用的可视化形式无法准确传达体检数据信息;(3)缺少从用户阅读体验出发的可视化方案设计。针对上述问题,笔者将可视化设计层次嵌套模型与以用户为中心的设计思想相结合,提出了以用户为中心的移动端体检数据可视化设计实践架构,从四个层次开展课题研究。第一问题刻画层,用户研究与需求分析,具体采用用户访谈、问卷调查等方法获取目标用户需求;通过竞品调研获取移动端应用中体检数据可视化的优缺点;制作用户画像,明确移动端应用的功能需求,提出设计策略。第二抽象层,体检数据分析及体检报告可视化原则提取,具体采用5W2H背景分析法收集背景信息,明确数据类型;根据用户需求及数据内容提出可视化设计原则。第三编码层,以血常规数据为例探索可视化编码形式,从趣味性、交互性、简约化三个方向设计体检报告可视化方案,提取特征整合优化为最终可视化方案。第四实现层,采用移动端应用设计实践对体检数据可视化进行交互实现及设计论证,以本课题设计的软康APP为载体完成可用性测试,最后根据用户评估结果优化可视化方案。本课题在可视化设计层次嵌套模型和以用户为中心的思想指导下,开展体检数据可视化设计研究,完成体检数据可视化视觉编码、体检报告可视化方案以及一款健康体检APP的设计实践。首次将可视化设计层次嵌套模型与以用户为中心的设计相结合,突出数据背景分析的重要性,是对医疗数据可视化领域研究的补充和丰富。
其他文献
目的:探讨日间高碳酸血症对阻塞性睡眠呼吸暂停低通气综合征(OSAHS)患者记忆力和执行功能的影响。方法:前瞻性收集2019年8月至2020年11月因打鼾于苏州大学附属第二医院睡眠中心就诊的患者,纳入符合入排标准的OSAHS患者123例,详细收集所有患者的基本信息、一般临床资料,检测日间清醒状态下经皮二氧化碳分压(PtcCO2),并行记忆力和执行功能评分,以及整夜多导睡眠监测(PSG)。记忆力和执行
学位
车联网中的车辆通过广播基本安全消息(Basic Safety Message,简称BSM)来共享车辆及交通相关信息,从而提高交通效率和安全性。专用短程通信(Dedicated Short Range Communication,简称DSRC)协议限制了BSM只能在控制信道(Control Channel,简称CCH)上传输,进而导致了BSM的传输效率较低,影响交通效率及道路安全性。随着车流密度的不
学位
群智感知具有时空覆盖广、成本低、应用场景普适等突出优势,可以高效地实现众多极具吸引力的新型感知应用。然而,这些通过利用群体智慧来解决复杂问题的群智感知应用受到参与用户的异质性、随机性等因素的影响,导致群智感知系统收集的感知数据质量难以保证。因此,如何选择合适的用户完成感知任务以保证任务的感知质量是群智感知应用中亟待解决的重要问题,通过设计合理的激励机制鼓励更多潜在用户参与群智感知任务被认为是保证平
学位
随着电商平台的兴起,网络上产生了大量产品相关的评价信息,对市场调研以及潜在客户购买意向决策具有重要意义。面对海量的评价信息,如何快速挖掘产品性能关键评价,从而生成与产品性能息息相关的问答数据具有极大的研究价值。因此,本文针对大量产品评价数据,通过问题生成模型,挖掘用户最关心的产品性能相关问题。传统的问题生成主要针对问答任务相关数据,采用端到端的深度学习架构模型。而基于产品评论的问题生成,不仅需要考
学位
事件抽取旨在挖掘自由文本中的事件信息,并以结构化的形式呈现。它主要包含四个子任务:触发词识别、事件类型分类、论元识别与事件角色分类,ACE为其提供权威数据集ACE2005,并将前两个子任务统称为“事件检测”。基于数据集ACE2005,本课题主要围绕句子级英文事件检测展开研究。目前,事件检测F1值均能达到70%以上,然而,仍存在些许问题。下面将阐述相关问题及解决方案。问题一:语句中多个事件间联系较弱
学位
命名实体识别旨在从无结构文本中识别出属于预定义语义类型的片段,是信息抽取和自然语言处理的关键问题之一。过去二十年里,命名实体识别技术取得了很多成功进展,但绝大多数的方法需要依赖大量同领域的标注语料。这使得将训练好的模型应用到其它领域时,必须在人工标注的目标领域样例上重新训练模型,否则性能下降剧烈。本文从以下两方面入手,提高目标领域的实体识别性能。一方面,试图从源领域的标注数据中挖掘任务相关、领域无
学位
强化学习问题通常可以构建为马尔科夫决策进程,是一种序贯决策问题。强化学习中,智能体通过与环境不断交互,并从中获取奖赏来进行自主学习。近几年,强化学习与深度学习、元学习等结合形成的新算法在人工智能领域十分流行。然而,强化学习中一直以来都存在一个重大的挑战,探索与利用的平衡,这二者之间的平衡对于算法的性能有很大的影响。针对这一问题,本文提出了多种权衡探索与利用的强化学习算法,并分别在深度强化学习和元强
学位
<正>从某种意义上说,习近平新时代中国特色社会主义思想之所以具有强大的真理力量、道义力量、实践力量、文明力量,就在于其在马克思主义世界观和方法论上深刻塑造并充分实践了“六个必须坚持”的理论精粹和实践智慧
期刊
习近平新时代中国特色社会主义思想的世界观和方法论是中国化时代化的马克思主义世界观和方法论,为全党和全国各族人民提供了科学的世界观方法论、奋进新征程的根本遵循与凝心聚力的思想武器。“六个必须坚持”从哲学层面凝练概括了习近平新时代中国特色社会主义思想的精髓要义,构成了相互联系、内在统一的世界观和方法论,系统阐明了中国共产党人应当坚持什么样的立场观点与方法推进中国式现代化宏图大业,将我们对马克思主义活的
期刊
在强化学习中,一个经典问题是如何解决价值函数对目标进行评估时产生的估计偏差。基于截断式Q学习的方法缓解了行动者评论家算法中出现的过估计偏差,但忽略了来自低估偏差的影响。其次,在使用传统经验回放机制的行动者评论家算法中仍然存在着低效采样导致的缓慢学习。本文主要针对以上问题,对现有算法做出了结合和改进,具体的研究内容可以总结为以下三个方面:(1)目前使用单一估计器进行更新的行动者评论家算法,在计算值函
学位