【摘 要】
:
视觉里程计是指通过相机采集到的帧序列来估计相机运动轨迹,用来实现相机自主定位的方法,这种方法被广泛应用于各种无人系统,是自主导航、避障、和目标跟踪的关键技术。视觉里程计从方法上可分为特征法和直接法:特征法通过匹配两帧之间的特征点建立几何模型求解位姿,这种求解方法的优点是精度高,但是对计算资源有一定的要求;直接法不需要建立特征点的匹配关系,直接使用光度误差模型优化位姿,计算速度较快,但是需要满足灰度
论文部分内容阅读
视觉里程计是指通过相机采集到的帧序列来估计相机运动轨迹,用来实现相机自主定位的方法,这种方法被广泛应用于各种无人系统,是自主导航、避障、和目标跟踪的关键技术。视觉里程计从方法上可分为特征法和直接法:特征法通过匹配两帧之间的特征点建立几何模型求解位姿,这种求解方法的优点是精度高,但是对计算资源有一定的要求;直接法不需要建立特征点的匹配关系,直接使用光度误差模型优化位姿,计算速度较快,但是需要满足灰度不变假设,精度有待提高。本文以计算资源受限的无人机平台作为研究背景,首先研究了轻量化的语义分割方法,再使用直接法提出一种基于空间和语义信息融合的视觉里程计方法。首先,针对当前语义分割算法普遍具有网络结构复杂和计算开销巨大的问题,提出一种基于多尺度视觉特征提取的轻量级语义分割方法LitNet,该方法整体采用编码-解码的网络结构。在编码部分,特征提取的基本结构由融合空洞卷积的逆残差模块构成,采用Mish激活函数补偿特征提取精度,将得到的特征图作为轻量化多尺度融合模块输入,并基于不同采样率的空洞卷积并行采样,使用多个比例捕捉特征图的上下文信息;在解码部分,设计了一种上采样特征融合模块,上采样的同时融合高低层特征,获取更加丰富的语义信息与空间信息。通过对比实验分析,所提方法在CamVid数据集上的准确度(平均交并比)为69.01%,平均分割速率为25.7FPS,LitNet更好地平衡了网络实时性和精确度,具有更优的实用价值和性能效果。然后,提出了一种融合空间和语义信息的视觉里程计方法SPSVO,包含建立局部地图、跟踪和基于滑动窗口的优化。以LitNet的分割结果作为视觉里程计的输入,建立局部地图部分使用特征法进行特征匹配,根据匹配关系计算位姿,跟踪部分使用直接法进行局部地图跟踪,最后使用融合光度误差和语义误差的滑动窗口优化模型进行局部地图优化。SPSVO在NVIDIA Jetson TX2平台上使用TUM-mono数据集进行实验验证:精度方面,SPSVO在旋转、平移较缓的场景下与ORB-SLAM相当,绝对轨迹的均方根误差(Absolute Trajectory Error,ATE)仅有 0.23;时耗方面,SPSVO 明显优于 DSO 和 ORB-SLAM,可达到41.5 FPS,SPSVO更好地平衡了视觉里程计的时耗与精度。
其他文献
数字视频是多媒体技术的一个重要传播途径,被广泛应用于社会的各行各业之中。如何让用户能够快速捕捉到视频的内容,从而决定是否需要继续观看是需要关注的问题。在这样的背景下,视频摘要技术应运产生。视频摘要是一种新的基于内容的视频压缩技术,它能有效地从视频中发现重要信息,消除冗余数据,是对视频内容的概括。近年来视频摘要技术有了很大的发展,但是如何生成高效、准确率高的视频摘要仍然在不断的探索中,本文围绕视频摘
密度峰值聚类算法(DPC)是一种新的基于密度的聚类算法,该算法具有原理简单、高效快速等优点,自从提出以来便引发许多学者的关注,且被广泛应用于图像处理、生物医学、文档处理等领域。同时,人们在应用中也发现DPC算法存在着一些问题:(1)该算法的聚类结果在一定程度上受截断距离参数设置的影响,人为设定的参数值将无法避免主观性与随机性这一问题;(2)样本局部密度的计算方法仅考虑了距离因素,而未能充分考虑全局
聚类算法作为数据处理的一种技术,发展迅速且被广泛应用在图像处理和计算机视觉中。目标检测作为这两个领域的交叉研究学科,同样也倍受关注。随着聚类算法的出现,研究者们开始尝试将其应用到检测中并取得了一些成果。但是,这些目标检测算法常常需要大量的先验条件,并且得到的实物目标也不够完整。针对该缺点,本文重点研究基于密度峰值聚类(DPC)的目标检测算法。为了更改好地将DPC算法应用于图像中,我们对其进行了一系
图像是信息传递的重要载体,在数字图像处理和计算机视觉领域都得到了大量的应用。逆光环境是比较常见的拍摄环境,因此由于拍摄环境造成的逆光图像占据了较大的比例。逆光图像暗区域(有意义区域)通常呈现可视质量低、细节表达不全面、色彩丢失严重等特点,背景区域通常呈现过度曝光、细节丢失、对比度低等特点,从而大大缩小了逆光图像的适用范围。目前专门针对逆光图像增强处理的研究较少,现有的增强算法往往会导致暗区域增强不
随着当今社会科技的迅速发展,人工智能、云计算等技术逐渐成熟,不计其数的网络服务使得数据规模与信息体量呈现出指数级别的增长,为了处理这些庞大的数据信息,推荐系统的应用必不可缺。推荐系统需要记录用户历史交互行为中的显式行为或隐式行为,发掘出用户的偏好特征,然后根据产品属性对不同的用户做出不同的推荐。本文对传统在线评论的推荐算法进行两大分类,基于document建模和基于review建模。其中对基于re
Android作为全球最受欢迎的移动平台,用户在感受其带来便利的同时,也将越来越多的个人数据存放在Android系统中,然而恶意应用的不断涌现,极大威胁着用户的信息安全。用户数据遭受威胁主要有以下两个方面的原因:一是由于Android系统存在着各种漏洞,恶意应用利用这些漏洞对用户设备进行攻击,从而窃取用户隐私。虽然现有Android系统的安全机制可以做到一定的防护,但这些安全机制依赖于系统底层的可
随着物联网技术的快速发展,物联网设备的数量呈指数级增长。因为物联网设备大多是资源受限的设备且很难运行较大的安全软件,所以物联网设备很容易遭受黑客的攻击导致数据泄露。因此物联网设备之间的安全访问和数据共享是一个重要的研究课题。传统的访问控制方案和数据共享方案大多是基于中心化的云服务器管理。在这些方案中,中心的云服务器很容易遭受单点故障问题。而且随着物联网设备数量的大量增长,中心的云服务器越来越难以管
医疗行业是与公民生命紧密相关的重要行业。部分医疗场景需要多机构协作及数据共享,在协作及数据共享过程中,机构之间不存在信任关系,导致协作和数据共享成本较高;医疗协作及数据共享过程存在大量人为因素干扰,进一步提高了医疗协作和数据共享的成本。此外,机构的数据中心多存在单点故障风险,容易因数据中心失效导致服务瘫痪。为解决以上问题,本文基于区块链和秘密共享技术,结合结核病防治这一具体医疗协作及数据共享场景,
随着科研人员的不断探索,研究的问题越来越复杂,目标检测只获取了场景中目标的类别信息和位置信息,而忽视了场景中各目标的内在联系。在实际生活中,需要处理的场景更为复杂,目标间的依赖更为紧密,如何高效解析复杂场景中各目标的空间布局及语义联系,并计算复杂场景间的相似性将变得越来越重要。为了解决上述问题,本文基于Faster R-CNN目标检测网络,提出了一种复杂场景相似性计算方法,并制作和标注了一个复杂场
随着移动智能设备的快速发展,越来越多的轨迹数据也随之产生,之后被第三方服务提供商收集,再存储到数据库中。对轨迹数据进行挖掘和分析可以解决诸多问题,但是轨迹数据中通常会包含移动对象的许多个人敏感隐私信息,如果对轨迹数据不加任何保护就直接使用,移动对象的个人敏感隐私信息将会被泄露出去,对移动对象本身造成巨大的损失,更甚者会带来人身威胁。因此,对轨迹数据隐私信息的保护吸引了许多国内外研究人员的关注。在现