【摘 要】
:
随着科研人员的不断探索,研究的问题越来越复杂,目标检测只获取了场景中目标的类别信息和位置信息,而忽视了场景中各目标的内在联系。在实际生活中,需要处理的场景更为复杂,目标间的依赖更为紧密,如何高效解析复杂场景中各目标的空间布局及语义联系,并计算复杂场景间的相似性将变得越来越重要。为了解决上述问题,本文基于Faster R-CNN目标检测网络,提出了一种复杂场景相似性计算方法,并制作和标注了一个复杂场
论文部分内容阅读
随着科研人员的不断探索,研究的问题越来越复杂,目标检测只获取了场景中目标的类别信息和位置信息,而忽视了场景中各目标的内在联系。在实际生活中,需要处理的场景更为复杂,目标间的依赖更为紧密,如何高效解析复杂场景中各目标的空间布局及语义联系,并计算复杂场景间的相似性将变得越来越重要。为了解决上述问题,本文基于Faster R-CNN目标检测网络,提出了一种复杂场景相似性计算方法,并制作和标注了一个复杂场景数据集,即CSBOGM(Complex Scene Based On Graph Model)数据集,主要研究工作如下:(1)提出一种基于Faster R-CNN的场景相似性计算方法。主要包含五部分:a)提出一种基于Faster R-CNN的数据预处理方法,其目的是为了实现对图像的目标检测、目标检测框去冗余以及目标检测框唯一编号;b)提出一种场景目标树构建方法,实现复杂场景下不同尺寸目标的划分与归并,同时,为构建场景图模型提供节点属性信息;c)提出一种目标间相对位置关系解析算法,用于处理复杂场景中各目标之间的语义联系,并为构建场景图模型提供边属性信息;d)基于上述b和c的方法,提出了两种场景图模型的构建方法,将其图模型分别命名为OT(Object Tree)图模型和PGAOT(Primary Goal And Object Tree)图模型;e)基于OT场景图模型和PGAOT场景图模型,提出了两种场景相似性计算方法。在Corel-1K数据集和Caltech101数据集上的实验结果表明:本文提出的方法在视觉感受和客观评价上取得了不错的效果,证明了本文提出方法的有效性和实用性。(2)制作和标注了一个复杂场景数据集,将其命名为CSBOGM数据集。考虑到真实场景往往更为复杂,已有的图像检索数据集场景目标单一,这些数据集不能有效代替真实场景,并不能证明已有的图像检索方法在复杂场景中的效果。因此,本文制作了CSBOGM数据集,包含10个复杂场景,共6200张图像。CSBOGM数据集上的实验结果进一步证明了本文提出方法的有效性,同时,两种对比方法在CSBOGM数据集上也取得了令人满意的效果,这从侧面反映出本文制作的CSBOGM数据集的合理性。综上所述,本文基于深度学习目标检测方法,提出了适用于复杂场景解析和场景相似性计算的方法,同时,本文制作的CSBOGM数据集相对于已有图像检索数据集的场景更为复杂,实验表明:本文提出的方法具有较高的可解释性和实用性,制作数据集的相对合理性。
其他文献
高分辨率图像能够提供较丰富的空间结构信息,是彩色和光谱成像设备的重要发展方向。然而,受成像设备的硬件限制、噪声及传输过程中的压缩等因素影响,采集得到的图像分辨率通常不够理想,易导致所成像场景目标的部分关键信息丢失。因此,在以上成像条件限制下,提升图像的分辨率,即图像超分辨率重建技术,对信息的挖掘和利用具有重要意义。近年来,图像超分辨率已经被广泛应用于监控识别、无人驾驶和医学成像等技术领域,并且已经
图像分割和目标检测一直是图像分析与计算机视觉领域的重点研究课题。随着近几十年来复杂网络理论的快速发展,将复杂网络理论应用到图像分析与计算机视觉领域成为研究人员关注的问题之一。本文以复杂网络理论中的社团检测和节点度分布理论为中心,对图像网络的构建、图像分割和视频中运动目标检测算法进行了研究。具体研究内容如下。(1)提出了一种基于局部网络模块度增量的超像素分割算法(LocalNet)。以像素点颜色相似
数字视频是多媒体技术的一个重要传播途径,被广泛应用于社会的各行各业之中。如何让用户能够快速捕捉到视频的内容,从而决定是否需要继续观看是需要关注的问题。在这样的背景下,视频摘要技术应运产生。视频摘要是一种新的基于内容的视频压缩技术,它能有效地从视频中发现重要信息,消除冗余数据,是对视频内容的概括。近年来视频摘要技术有了很大的发展,但是如何生成高效、准确率高的视频摘要仍然在不断的探索中,本文围绕视频摘
密度峰值聚类算法(DPC)是一种新的基于密度的聚类算法,该算法具有原理简单、高效快速等优点,自从提出以来便引发许多学者的关注,且被广泛应用于图像处理、生物医学、文档处理等领域。同时,人们在应用中也发现DPC算法存在着一些问题:(1)该算法的聚类结果在一定程度上受截断距离参数设置的影响,人为设定的参数值将无法避免主观性与随机性这一问题;(2)样本局部密度的计算方法仅考虑了距离因素,而未能充分考虑全局
聚类算法作为数据处理的一种技术,发展迅速且被广泛应用在图像处理和计算机视觉中。目标检测作为这两个领域的交叉研究学科,同样也倍受关注。随着聚类算法的出现,研究者们开始尝试将其应用到检测中并取得了一些成果。但是,这些目标检测算法常常需要大量的先验条件,并且得到的实物目标也不够完整。针对该缺点,本文重点研究基于密度峰值聚类(DPC)的目标检测算法。为了更改好地将DPC算法应用于图像中,我们对其进行了一系
图像是信息传递的重要载体,在数字图像处理和计算机视觉领域都得到了大量的应用。逆光环境是比较常见的拍摄环境,因此由于拍摄环境造成的逆光图像占据了较大的比例。逆光图像暗区域(有意义区域)通常呈现可视质量低、细节表达不全面、色彩丢失严重等特点,背景区域通常呈现过度曝光、细节丢失、对比度低等特点,从而大大缩小了逆光图像的适用范围。目前专门针对逆光图像增强处理的研究较少,现有的增强算法往往会导致暗区域增强不
随着当今社会科技的迅速发展,人工智能、云计算等技术逐渐成熟,不计其数的网络服务使得数据规模与信息体量呈现出指数级别的增长,为了处理这些庞大的数据信息,推荐系统的应用必不可缺。推荐系统需要记录用户历史交互行为中的显式行为或隐式行为,发掘出用户的偏好特征,然后根据产品属性对不同的用户做出不同的推荐。本文对传统在线评论的推荐算法进行两大分类,基于document建模和基于review建模。其中对基于re
Android作为全球最受欢迎的移动平台,用户在感受其带来便利的同时,也将越来越多的个人数据存放在Android系统中,然而恶意应用的不断涌现,极大威胁着用户的信息安全。用户数据遭受威胁主要有以下两个方面的原因:一是由于Android系统存在着各种漏洞,恶意应用利用这些漏洞对用户设备进行攻击,从而窃取用户隐私。虽然现有Android系统的安全机制可以做到一定的防护,但这些安全机制依赖于系统底层的可
随着物联网技术的快速发展,物联网设备的数量呈指数级增长。因为物联网设备大多是资源受限的设备且很难运行较大的安全软件,所以物联网设备很容易遭受黑客的攻击导致数据泄露。因此物联网设备之间的安全访问和数据共享是一个重要的研究课题。传统的访问控制方案和数据共享方案大多是基于中心化的云服务器管理。在这些方案中,中心的云服务器很容易遭受单点故障问题。而且随着物联网设备数量的大量增长,中心的云服务器越来越难以管
医疗行业是与公民生命紧密相关的重要行业。部分医疗场景需要多机构协作及数据共享,在协作及数据共享过程中,机构之间不存在信任关系,导致协作和数据共享成本较高;医疗协作及数据共享过程存在大量人为因素干扰,进一步提高了医疗协作和数据共享的成本。此外,机构的数据中心多存在单点故障风险,容易因数据中心失效导致服务瘫痪。为解决以上问题,本文基于区块链和秘密共享技术,结合结核病防治这一具体医疗协作及数据共享场景,