论文部分内容阅读
随着社会经济的发展,能源危机和环境污染问题加剧,寻找清洁可再生能源已成为世界范围能源研究的重点。其中太阳能光伏行业的发展尤为迅猛,目前光伏市场的主流技术仍为晶硅电池技术,但新结构、新材料的出现为光伏技术的发展注入了新的活力,a-Si/c-Si异质结太阳电池就是典型的新型结构电池之一。a-Si/c-Si异质结太阳电池具有众多优点,包括效率高、成本低、稳定性好、制备温度低等。目前,异质结电池的实验室效率最高达到26.7%(日本Kaneka公司),在2016年组件的商业化生产效率达到了 23.8%,创下了新的记录。本文针对a-Si/c-Si异质结太阳电池的独特结构,以晶向(100)的p型单晶硅为基片,采用射频磁控溅射方法制备不同厚度的非晶硅膜,并利用快速热扩散技术实现电池发射层的制备,以得到p-n结。探究不同厚度的非晶硅膜在不同的扩散条件下对非晶硅膜晶化情况和对发射层厚度的影响,并对电池性能进行表征。利用台阶仪、扫描电子显微镜、拉曼光谱测试、X射线衍射、电流-电压特性测试等不同检测技术进行表征,获得的主要结果为:(1)利用磁控溅射方法采用高纯本征硅靶材,以200W的射频功率、300℃的衬底温度溅射制备i-a-Si层,其电阻率达到1.27*105Ω·cm,在本征硅合理电阻率范围内,且在此衬底温度下a-Si膜不会发生晶化,平均溅射速率约为292.05 nm/h。利用扫描电子显微镜表征其表面形貌良好,而且经过刻蚀清洗之后的a-Si膜的厚度有所减小。(2)利用磨角染色法测量p-n结的深度并通过计算分析得到,提高扩散温度或延长扩散时间可以增加扩散的深度。计算得到在700℃、750℃、800℃、850℃时扩散速率分别约为14.0 nm/s、14.2 nm/s、14.5 nm/s、19.8 nm/s。因此可以根据以上结深的趋势进行后续的调整,以得到质量较好的p-n结。(3)对于扩散温度和扩散时间对a-Si膜晶化的影响做了系统研究。采用拉曼光谱以和X射线衍射进行表征,两者得到的薄膜晶化结果相同。不同厚度的a-Si膜,经过快速热扩散后具有不同的晶化起始条件,a-Si膜越厚,越优先开始晶化。该规律证明了在微晶硅膜底部和表面之间存在晶化梯度,即底部的晶化率低,而表面晶化率高。因此,针对a-Si膜的晶化情况,溅射厚度分别为1135 nm、847 nm、553 nm、448 nm、319 nm 的 a-Si 膜可供选择的快速热扩散的范围分别为850℃、10s和800℃、60s及以下,850℃、50s及以下,850℃、70s及以下,900℃、70s及以下,900℃、70s及以下。(4)制备了 a-Si/c-Si异质结太阳能电池器件,并对其进行伏安特性测试,经过分析得出结论:本实验中,溅射厚度为319nm的a-Si膜在800℃、20s的扩散条件下制备得到的a-Si/c-Si异质结太阳能电池性能最优,测得电池的效率为8.25%,短路电流、开路电压、填充因子分别为ISC=24.412 mA,VOC=451.750 mV,FF=0.482。