4G/5G双频共用基站天线研究与设计

来源 :华南理工大学 | 被引量 : 0次 | 上传用户:xiongyongdezhanghao
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
5G(第五代移动通信)网络商用在逐渐拓展,4G网络将长期与之并存,与此同时,基站站址资源在长期扩容中日显枯竭。为此,将4G/5G基站天线集成为一体,实现共建共享共用,成为了国家战略规划。针对这一背景,本文选择对4G/5G双频共用基站天线进行研究,具有实用意义。本文从网络应用需求出发,依托实际项目,分别对压铸型和PCB型天线辐射单元的双频嵌套阵列共用基站天线进行了研究和设计。1、本文首先参照2G/3G/4G压铸嵌套型辐射单元双频双极化天线阵列的成熟经验,将高频段首次拓展到5G的3.3-3.8GHz应用,并在频谱重耕后4G的1.71-2.17GHz低频段设计出碗状压铸型天线单元,用于5G单元的嵌套。在设计中充分考虑双频之间的相互耦合影响以及更高频段带来的敏感尺寸公差特性,通过容差仿真得到具有稳定性能的双频嵌套天线阵列,在高低频段分别实现2°-12°和0°-10°的电调下倾角。与传统基站天线相比,所设计的双频基站天线在满足工程性能要求的同时显著减小了天线的体积,极大地提升了铁塔天面资源的利用率。该产品已批量生产并入网使用,具有商用价值。2、鉴于压铸型单元重量大、成本高等缺点,本文进一步探讨采用PCB形式的一体化双频双极化天线单元作为升级改良,提出将高低频巴伦融合在一块PCB介质板上,实现高低频段的一体化;进一步提出将低频辐射臂末端折弯90°,且设计相邻的正交极化辐射臂参与耦合优化,最终在实现基本相当的电性能情况下达成了天线小型化。该PCB型天线单元在节省成本的同时实现了轻量化,相较于压铸型单元在4G/5G双频天线应用中更具优势。
其他文献
中国不断推进的城市化进程使得现有城市内建设用地更为紧张,同时不断增长的城市人口也带来了对公共文化设施使用的巨大需求,针对这种情况,近二十年来我国兴建起不少“多馆合一”类文化建筑综合体,其意在通过多馆的集中建设集中运营,达到高效使用城市文化资源的目的。但因缺乏相关设计策略的探讨,此类综合体往往在设计中呈现出有如“大而无当”、“貌合神离”等问题,这不仅对现有城市风貌产生影响,更对城市空间资源、城市文化
随着臭氧层的破坏,紫外辐射日益严重,导致皮肤晒红晒伤、加速衰老,影响人体健康,因此防晒护肤刻不容缓。木质素在植物中的含量仅次于纤维素,是自然界储量最丰富的芳香聚合物生物质。天然的芳香骨架和大分子结构赋予木质素良好的紫外线吸收和光稳定性能。分子中酚羟基能够清除自由基,赋予木质素优异的抗氧化性能。同时,木质素生物相容性好,是制备绿色防晒剂的理想选择。但是,木质素由于共轭结构小、无序聚集对长波紫外线(U
台风过境会引起所经海域海洋环境要素场产生剧烈的响应过程。本文通过对2015年10号台风“莲花”引起的南海东北部上层海洋响应的观测分析和数值模拟,从热力学和动力学角度研究了台风期间的响应过程。通过观测分析,发现在台风下垫面由陆地转变为海洋(台风从吕宋岛离岸)和海洋转变为陆地(台风从粤东沿岸登陆)后,出现两次移动路径的明显偏转。台风引起的海表降温有两个阶段:第一阶段以台风经过时中心吸热(海表失热每秒可
随着能源需求的日益增长和环境污染问题的日益严峻,可充电电池已然引起广泛关注。其中,锂离子电池因其能量密度高,稳定性好,在商业上已获得巨大的成功。然而,锂资源的匮乏和成本的高昂限制了其未来进一步的发展。因此,寻找廉价、资源丰富的替代品成为当务之急。钾和钠具有与锂相近的氧化还原电位,但价格低廉,自然界储量丰富,有望替代锂离子,成为新的碱金属电池材料,目前已成为研究新热点。其中,寻找与之相适应的电极材料
电力电容器及其串联电抗器是电网中重要的无功补偿设备和滤波装置,被广泛应用于各个电压等级的配电网中。近年来,随着非线性用电设备的增多,配电网中谐波污染日趋严重,谐波对电容器组造成的不良后果已越来越不容忽视。因此建立准确有效的谐波干扰下电容器和电抗器的仿真模型,并针对其损坏机理开展多物理场研究,能够为电容器组的绝缘设计、结构优化以及寿命预估等方面提供参考,对改善电力系统中电容器组设备的运行状况有着重要
氢是一种清洁、高效的能源载体,有望在未来清洁能源经济中扮演重要角色,但氢能的规模化产业应用面临着高效、安全氢储运这一关键技术难题。数十年来,各国学者围绕多种类型的储氢材料开展了大量研究,但迄今尚未发现可在温和温度下高容量、快速充/放氢的可逆储氢材料。近年来,结合可控放氢与氢化物再生的化学储氢技术为突破储氢“瓶颈”提供了契机。在多种备选材料中,水合肼(N2H4·H2O)是一种具有高储氢密度、较低廉材
高能球磨是最常用的一种实现粉体细化和机械合金化的方法,但传统的高能球磨法只有单一的机械能输入,存在效率低、能耗高、粉末污染等问题。等离子球磨是解决上述问题的一种有效途径。本文首先综述了高能球磨技术和等离子球磨技术的原理及应用,然后调控等离子球磨工艺,制备了片状吸波铁粉,并研究了放电参数与球磨参数对粉末形貌的影响。最后,探讨了等离子球磨过程中片状铁粉的形成机理。研究发现,在常规的放电参数下,本研究采
随着我国劳动力成本的上升,使用机器替代人工成为仓储物流企业转型升级的重要方向,自动导引车(Automated Guided Vehicle,AGV)作为一种高效、便捷、智能的分拣、出入库、补货搬运工具,在提升仓库智能化水平、降低人力资源成本等方面有着显著优势,被越来越多的运用于电商、医药、日化、图书等以拆零拣选为主的行业中。本文在分析了国内外专家学者已有研究成果以及当前企业订单拣选系统现状的基础上
基于深度学习的神经网络模型极大地推动了行人检测领域的发展,然而现有方法往往依赖于大量昂贵的标注数据,并且忽视了不同数据域之间存在的巨大差异,使得在一个场景中训练得到的检测器难以适用于目标场景。针对上述问题,本文对半监督行人检测进行了以下几个方面的研究:(1)为了解决标注数据不足的问题,本文提出了一种显著性信息指导的半监督行人检测方法(Salience Guided Semi-supervised
在多载波通信系统中,由于多普勒效应与收发端之间的失配,系统的子载波容易产生频率偏移,导致子载波之间的正交性被破坏,进而引起子载波间干扰,影响系统性能。而正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)技术凭借较高的频谱效率和抗多径干扰的能力,正广泛应用于多载波无线通信系统中,在其基础上提出的基于序号调制的正交频分复用(Orthogona