论文部分内容阅读
甲烷部分氧化制合成气(POM)方法因具有反应速率快、能耗低,可显著降低设备投资和生产成本,生成的合成气H2/CO的比例为2,可直接用于甲醇及费-托合成等优点而成为国内外研究的热点。本文以甲烷部分氧化制合成气为模型反应,结合XRD、BET、TPR和分散度、TG-DTA、拉曼光谱、SEM、XPS等表征手段,研究了Ni、Pd系催化剂制备工艺、改性剂和改性效应、催化性能,并进行工业化初探,为POM催化剂设计提供基础数据。Ni系催化剂的研究表明,对于以α-Al2O3为载体的Ni基POM催化剂,Ni的最优负载量是10%;载体比表面有一个阈值,即4.042m2/g,当比表面大于阈值后,载体的孔容、孔径成为主要影响因素,因为孔容、孔径的增大可使反应物和产物扩散速度增大,从而提高催化剂的活性。在本实验中得出需要载体孔容Vt≥0.0160cm3/g,孔径Dp≥13.08nm。Smicro/SBET能很好反映载体孔结构对催化剂的影响规律,当Smicro/SBET≤37.79%时,催化剂的活性较好;助剂CeO2-ZrO2改性催化剂能有效提高催化活性和稳定性,在机械混合、分子混合和原子混合三种不同的载体混合方式中,机械混合载体催化剂的稳定性和抗积炭性能最好,主要是因为机械混合样品中Ni-Al2O3间具有较强的相互作用能够抑制活性组分的烧结和积炭,提高催化剂的稳定性。Pd系催化剂的研究表明,以CeO2-ZrO2为载体能减少活性组分Pd的负载量,并能提高POM催化剂的活性和稳定性,可归因于CeO2-ZrO2载体能提高活性组分分散度和CeO2-ZrO2中的晶格氧参与反应;还可以提高Pd催化剂的耐高温性能;以机械混合、分子混合和原子混合三种CeO2-ZrO2/Al2O3载体制备的催化剂中分子混合载体催化剂具有最佳的稳定性,这是因为分子混合样品中金属与CeO2-ZrO2接触的界面较大,CeO2-ZrO2中的晶格氧能及时消除金属上的积炭。对性能较好的Pd系模型催化剂开展工业化初探研究表明,将CeO2-ZrO2以助剂形式与Al2O3以摩尔比例1:1混合制得的催化剂,表面吸附的SO2可形成具有一定氧化性的硫酸盐类,从而提高了催化剂的抗硫性能。采用金属蜂窝载体,可以有效降低催化剂床层飞温点温度为880℃,低于催化剂焙烧温度950℃,避免了活性中心团聚和载体烧结,延长了催化剂的使用寿命。