基于机器学习的心血管疾病风险预测关键技术研究

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:jixiong520
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
机器学习是人工智能研究中的关键技术,在医学健康方面有着广泛的应用前景。心血管疾病(Cardiovascular Diseases,CVD)是目前世界上对人类社会造成严重健康威胁的疾病。采用机器学习方法对CVD风险进行精确地预测,可以有效识别高风险患者及危险因素,及时采取相应的干预措施并帮助医疗机构优化资源分配,具有重要的现实意义。针对CVD风险预测,本文进行了以下几个方面的研究工作:(1)研究了基于机器学习模型的CVD每日入院量预测方法。在数据采集上,除基本的入院量数据外,将环境因素也纳入研究中;然后在机器学习模型上采用直接预测策略构建CVD每日入院量预测模型,并与传统的LR模型进行结果对比;最后进行特征重要性分析。结果表明,机器学习模型在各个指标上均优于LR模型,其中Adaboost模型预测表现最好。(2)研究了急性心肌梗死(Acute Myocardial Infarction,AMI)患者再入院风险预测方法,提出了一种基于Stacking技术的集成学习模型来预测AMI患者30天内非计划再入院风险。通过一种自适应策略从多个候选模型中选择一些模型作为基分类器,然后在基分类器上构建三层Stacking集成学习模型,并且与机器学习模型进行预测结果的对比。结果显示,与机器学习模型相比,本文提出的Stacking模型在各个评价指标上均取得最优的表现。(3)研究了基于深度学习的AMI患者住院死亡风险预测方法。首先构建了深度学习中的多层感知机(Multi-Layer Perceptron,MLP)模型,然后通过一种结合线性模型和树模型优点的过滤式特征选择方法进行特征选择,最后采用逐层相关传播(Layer-wise Relevance Propagation,LRP)方法进行可解释性研究。实验结果表明,本文构建的MLP模型相较其他模型表现最优,采用的过滤式特征选择方法能明显提高模型预测表现并减少其运行时间,LRP方法在临床结构化数据上也能有很好的解释效果。
其他文献
随着计算流体力学(CFD)应用的精度需求不断提升,网格量越来越大,CFD产生的流场数据量达到了TB甚至PB量级。流场数据的时空复杂性提升,会导致时空特征难以辨认,也需要研究者耗费更多的时间人工抽取关键信息帮助认知流场中的复杂流动机理。如何自动抽取流场特征及关键时间步,将成为研究的热点,也是研究者面临的巨大挑战。近年来,深度学习的快速发展给各领域解决问题提供了新的思路。深度学习技术可以对海量数据进行
随着互联网技术的高速进步,传统工业领域应用互联网技术的情况越来越普遍。工业系统中数据的重要性不言而喻,而传统行业中的企业在数据管理方面能力的欠缺以及数据管理工具的缺失,加之数据来源多样化且异构性高,导致大量工业数据或是质量不高、或是同一企业分布在不同业务系统中的数据之间形成信息孤岛等等,使得数据中的信息得不到有效利用,这其中蕴藏的大量宝贵财富被浪费。针对上述场景,如何高效地集成及清洗多源异构数据,
推荐技术可以发掘用户感兴趣的商品,已经被应用到了互联网的各个领域。一般的推荐系统,通常基于用户的完整个人信息和历史行为做出推荐决策。但在某些情况下,用户的登录和访问是匿名的,其个人信息和长期配置文件往往不能直接获取,并且用户的兴趣又是动态变化的,具有较强的即时性,因此,需要考虑基于用户当前正在进行的会话(Session,又称匿名会话)做出推荐决策,即会话推荐(Session-based Recom
同步理论的起源来自于17世纪C.Huygens发现的单摆同步现象,在这之后的数百年里,同步现象被大量的学者发展和完善,并在众多领域中展现了其应用价值。近些年来,研究人员在微观尺度下观察到了类似的同步现象。依托量子力学的独特性质,使经典同步理论很难准确的描述和分析量子系统的同步现象。所以,量子同步理论成为了一个新的研究热点。量子同步理论作为量子力学、信息学与控制论的交叉学科,其主要研究目标使给出量子
建立可以与人类进行自然交流的智能聊天机器人一直是人工智能领域的巨大挑战。特别是开放域对话系统长期受到语料库和建模方法的限制,难以实现没有任何场景及话题约束的自由聊天。随着深度学习与大数据技术的发展,一种基于深度学习的回复生成方法被提出。该方法建立的聊天机器人可以与聊天者就任意感兴趣的话题进行聊天,具有良好的扩展性。然而这种基于深度学习模型的序列到序列的建模方法利用的是最大似然概率来生成回复语句的每
精神分裂症(Schizophrenia,SCZ)是一种具有严重危害性的慢性精神类疾病,可能给个人及家庭甚至社会带来沉重负担。目前,SCZ的病因和发病机制不完全清楚,临床主要依靠医生经验及患者与家属的病情陈述进行诊断与疗效评估,缺乏客观的评判指标。因此,寻找SCZ的客观电生理标志物以改善SCZ诊断及疗效评估,具有重要的临床意义。临床治疗SCZ主要以抗精神分裂症药物为主。本文针对服用氯氮平的SCZ患者
为了实现半实物射频仿真系统中近场效应误差更高效与更高精度的修正,获得三元组单元馈电的精确控制参数。本文系统的分析了已建立的修正流程和相关原理,针对现行方案存在的优化精度有限且计算效率低的问题提出对应的改进思路,从高精度智能反演算法和高效电磁正演建模两方面对修正方案进行了系统的优化设计和验证考察。对于修正方案中初始幅、相参数提取所涉及的反向优化算法,结合坡印廷矢量公式分别研究了基于PSO算法和PSO
无监督域适应(Unsupervised domain adaptation,UDA)是一种通过从有标注的源域里获得知识,并把知识迁移到缺乏标注的目标域上的机器学习方法。现主流域适应研究关注于对齐两个域的特征分布,借此希望在源域训练的分类器能适用于目标域数据。但这些方法通常存在两个缺陷:(1)分类器偏向源域数据:大部分UDA方法只考虑最小化两个域的差异和源域的分类损失,而不对分类器施加其他约束。所以
目前,人们对于情感的表达尤为重视,中老年人喜好看新闻短评,时不时会发表自己的态度和观点;年轻人喜好在微博、知乎等平台分享所见所闻。以及一些短视频社交软件的不断涌现,比如抖音、Vlog等,人们表达情感的欲望更加强烈,情绪在生活中的作用也越来越不容忽视。良好的情绪,能帮助自己更好地完成工作;消极的情绪,对身体机能有一定伤害的同时,甚至还会影响健康人格的形成。随着疫情防控常态化,人们对心理健康的关注度上
社交网络信息传播速度快、范围广、即时性强,吸引海量用户通过社交网络分享社会消息、讨论现实事件。社交网络事件通常是现实事件在网络空间的映射,因此研究社交网络热点事件预测具有重要意义与价值。例如,预测热点事件能够辅助相关部门管控谣言传播,避免社会恐慌,维护公共安全。用户在社交网络发布的信息以文本内容为主,文本与事件热度相关性高,并且相较其它事件相关数据更易获取,是事件预测的重要数据基础。然而文本数据价