【摘 要】
:
工业循环冷却水系统作为工业生产的重要组成部分,对于水资源的合理利用具有重大意义。然而浓缩后的工业循环冷却水在换热器壁面的结垢问题不仅会降低换热效率,还会导致垢下腐蚀甚至非计划停车,为工业生产带来安全隐患。近年来,电化学除垢因其能够直接从循环水主体去除成垢离子,有效提高浓缩倍数,减少排放量,被誉为环境友好型技术,引发广泛关注。虽然电化学除垢技术具有无法替代的优势,但除垢速率低,能耗较高和阴极清洗再生
论文部分内容阅读
工业循环冷却水系统作为工业生产的重要组成部分,对于水资源的合理利用具有重大意义。然而浓缩后的工业循环冷却水在换热器壁面的结垢问题不仅会降低换热效率,还会导致垢下腐蚀甚至非计划停车,为工业生产带来安全隐患。近年来,电化学除垢因其能够直接从循环水主体去除成垢离子,有效提高浓缩倍数,减少排放量,被誉为环境友好型技术,引发广泛关注。虽然电化学除垢技术具有无法替代的优势,但除垢速率低,能耗较高和阴极清洗再生困难限制了该技术的应用。本文围绕三维阴极增强电化学除垢装置性能进行了系统研究。首先,针对电化学除垢过程中由于垢层附着导致能耗提高和阴极失活的问题,发明了锯齿阴极并进行了优化,锯齿长度为20 mm,角度为60°,阴阳极间距为15 mm,电流大小为0.3 A时兼具较高的阴极除垢速率和较低的能耗。新型除垢装置阴极除垢速率15.2 g/m~2·h,能量消耗降至5.27 k W·h/kg Ca CO3。在此基础上,通过改变阴极三维结构和外加离子交换膜等方式进一步提升了除垢速率。通过形貌表征和COMSOL Multiphysics软件模拟阐述了锯齿网状阴极的低除垢能耗机理,该结构由于具有尖端效应,大大增加了局部碱度和水垢的沉积速率,促进了阴极表面不断更新,平缓部位也能在尖端被垢层覆盖之后,为后续的阴极反应提供场所。同时锯齿形式有效增加了阴极面积,通过尖端区域和平坦区域的协同作用,促进阴极表面更新,使得电化学除垢系统能耗大幅降低。针对电化学除垢后的垢层脱除问题,提出了与锯齿网状阴极相适配的高速搅拌机旋转脱垢和预沉积Mg(OH)2的方法。从工艺条件方面优化了高速搅拌机旋转脱垢的参数和预沉积Mg(OH)2的参数。实验表明在一定范围内,预沉积Mg(OH)2的浓度越高、时间越长、电流密度越大,其阴极除垢速率越高,脱垢率也越高,除垢速率能提升28.4%,达到27.02 g/m~2·h,脱垢率则能提升15%±5%。同时预沉积Mg(OH)2之后对电化学除垢过程中的阴极电位进行监测,能明显观测到阴极自清洁现象,有利于阴极表面更新和降低除垢能耗。
其他文献
全球淡水资源短缺的问题使得人们迫切地希望寻找可替代的方法来缓解这一危机,各种海水淡化技术应用而生,随之带来的大量卤水处置造成了新的环境危机和能源危机。基于环境保护和资源可持续利用的目的,传统的卤水管理策略已不适用于目前的海水淡化现状。因此逐渐提出盐水体积最小化或是零液体排放(ZLD)的卤水管理策略,实现卤水的处理以及卤水中可利用资源的回收。新兴的膜技术由于能耗高、膜污染等问题,无法实现高效的卤水处
天然气水合物广泛分布在我国南海和大陆冻土中,具备储量巨大,清洁环保等诸多优点,具有代替传统化石能源的潜力。在未来我国碳达峰-碳中和战略中具有重大作用。目前我国已多次开展开采测试均取得巨大成功,但目前产气量、产气效率、工程安全等多项指标还达不到成熟规模化生产要求。水合物储层的特殊地质条件造成的低渗透特性是制约开采进程的主要影响因素,建立合理可靠的渗透率模型,探究其变化规律,对于推进规模化开采进程具有
<正>盘口微敞,龙口衔唇,龙颈接腹,细高颈,鼓腹,与龙柄相对处有一鸡首。两旁各有三钮,中间钮下贴宝相花一朵;龙柄、鸡首及六钮下各垂束莲、忍冬。腹部有棱,下贴四只展翅凤鸟。通体黄绿釉,有冰裂纹,釉面光亮,胎质略粗,呈浅黄色,质较坚。
天然气水合物作为一种新型清洁能源,因其能量密度高、资源密度优、全球分布广,从而引起了世界研究人员的高度关注。全球几乎97%的水合物资源蕴藏于海洋中,我国海域天然气水合物储量更是高达800亿吨油当量。然而,海洋水合物传统开采方法易引发海底储层塌陷、斜坡失稳等地质灾害及产砂堵塞等开采障碍,导致水合物开采产气效率低、持续性差等难题。CO2置换开采水合物具有环境友好及维持储层稳定性的优点,因此,探明海洋天
随着电子、光电子、电力电子等设备逐渐向高功率、高结构紧凑性方向发展,核心部件单位面积的发热量急剧上升,热流密度达到100 W/cm~2以上,甚至接近1000 W/cm~2。为了解决高热流密度散热问题,微/纳米结构表面、具有吸液芯结构的热管、微通道相变冷却等技术逐渐被应用。在上述传热技术中,薄液膜在高热流下的沸腾特性是影响散热系统性能的关键,然而目前对薄液膜的相变传热规律尚不清楚,包括:过热度、液膜
燃烧流场的温度、压力、气流速度、组分浓度等参数是判断燃烧状况的重要依据,也是节约能源、减少污染物排放必不可少的重要指标。燃烧场的非接触式在线诊断有着重大的需求,本文针对传统测量方法的不足,例如响应慢、测量精度低、寿命短、难以实现在线测量等,使用了非接触式的可调谐半导体激光吸收光谱技术(TDLAS)测量方法,研究了燃烧火焰温度和气流速度的实时在线测量方案。基于气体吸收光谱理论和多普勒频移效应,利用时
伤口愈合是一个复杂的动态过程,正常的急性伤口可以在一定时间内恢复,慢性伤口的愈合时间长并且容易复发。创面活性氧(reactive oxygen species,ROS)含量过高或者伤口处持续产生的ROS将会导致慢性伤口难以愈合,在创面进行抗氧化剂治疗,运用自由基清除剂来减少ROS,减少ROS的毒性作用时间能加快慢性伤口的创面愈合。依达拉奉(edaravone,Ed)是一种良好的抗氧化剂,能清除自由
太阳能界面蒸发技术采用清洁能源太阳能进行海水淡化,既可以减少化石能源的使用,降低环境污染,又能产生淡水,缓解淡水危机,是一种前景广阔的先进技术。典型的界面蒸发过程是将蒸发体漂浮于海面上进行光吸收、热转换、水输运和蒸发,其中界面蒸发体的性能至关重要。理想的蒸发体应该具有吸水性能好,阻热能力强,机械强度高等特性,除此之外,蒸发速率和长期稳定性也是评判其能否实际应用的重要指标。针对以上问题,本论文提出了
神经退行性疾病(Neurodegenerative diseases,ND)和创伤性脑损伤(Traumatic brain injury,TBI)等对社会的影响越来越大。神经干细胞(Neural stem cells,NSCs)可以通过自我更新并分化为中枢神经系统中的主要细胞类型来替代受损的神经细胞,而单纯移植的NSCs成活率较低。越来越多的研究显示,导电水凝胶可以提供NSCs生长所需的仿生骨架,
随着社会对环境问题意识的提高,可持续、可靠、高效、有竞争力的能源变得越来越重要。超级电容器作为介电电容器和常规电池的中间过渡器件,因其具有可逆性好、充放电速度快、循环寿命长和高能量密度而广受重视。而合理设计和合成纳米结构的电极材料对于开发高性能超级电容器至关重要。本论文以具有独特结构和氧化还原性能的纳米Co类普鲁士蓝(Co PBA)及其复合材料为电极材料,对其进行了研究。采用牺牲模板法合成Co类普