【摘 要】
:
本文提出并研究一些新型的排序问题,其模型是经典排序问题和现有的排序问题的推广。经典排序问题中,工件的加工时间是不变的,我们研究工件的加工时间依赖开工时间或者开工位置变化的模型;目前几乎没有研究在线与恶化效应结合的排序问题文献,我们提出相关模型并研究;经典的在线问题(over time模型)是指工件只有到达后才知道信息,也就是说要做决策必须要等到工件到达,我们研究的在线模型是提前一段时间就知道工件的
论文部分内容阅读
本文提出并研究一些新型的排序问题,其模型是经典排序问题和现有的排序问题的推广。经典排序问题中,工件的加工时间是不变的,我们研究工件的加工时间依赖开工时间或者开工位置变化的模型;目前几乎没有研究在线与恶化效应结合的排序问题文献,我们提出相关模型并研究;经典的在线问题(over time模型)是指工件只有到达后才知道信息,也就是说要做决策必须要等到工件到达,我们研究的在线模型是提前一段时间就知道工件的信息。本文研究的工件信息到达时间是依时间(over time)的,分批模型是指平行批模型,即工件同一时刻最多加工B个工件,B为机器的容量,批的加工时间为该批工件中最大的加工时间。本文主要由四个部分组成。第一章,我们介绍排序问题和算法复杂性的一些基本知识,并对在线排序、分批排序、带恶化效应的排序的研究进行了综述。第二章研究加工时间是一般函数的排序问题,主要考虑了两类有一般加工时间函数的排序问题,工件的加工时间分别为基本加工时间与开工时间函数、位置函数的和。对于加工时间依赖开工时间的模型,证明一定条件下极小化最大完工时间和极小化总完工时间是多项式可解的。对于加工时间依赖开工位置的模型,给出极小化最大完工时间和总完工时间的最优序,同时证明了极小化加权总完工时间的一个最优排序性质并给出一个贪婪算法。第三章研究加工时间是具有线性恶化效应的在线排序问题,工件Jj的实际加工时间为Pj=bj+αt,其中bj为基本加工时间, α>0为恶化率, t是开工时间,目标为极小化最大完工时间。证明不分批的单机在线问题的下界至少为;对批容量无限的单机在线问题给出一个在线算法βH∞,并证明其竞争比和问题的下界相同,为(1+α)β+1,其中进而算法是最优的;对于批容量无限的同型机排序问题,给出在线算法并证明其竞争比为(1+α)βm+1,其中第四章研究工件具有提前预知信息的在线排序问题,从预知时间到工件可加工的时间之间间隔为a,还知道工件的最大加工是为pmax,目标为极小化最大完工时间,对于批容量无限的单机(在线问√题给出一个)在线算法γH∞,并证明其竞争比和问题的下界相同,为其中pmax+a/2,进而算法是最优的;对于(批容量无√限的同型机排)序问题,给出在线算法γmH∞并证明其竞争比为1+γm,其中最后,我们对本文研究的问题进行了总结和展望。
其他文献
复杂多变的不确定决策环境和决策者有限的认知水平为多属性决策方法的研究带来了更多的机遇和挑战。本文基于OWA算子、犹豫模糊信息、概率犹豫模糊信息和概率区间犹豫模糊信息的决策方法进行了深入系统地研究,主要工作如下:(1)研究了基于椭圆分布的OWA算子的决策方法。利用量化函数定义了对偶OWA算子和对偶加权OWA算子,具体研究了两类算子的基本性质。基于概率统计中广泛存在的椭圆分布,提出几种有效实用的OWA
登山是极具社会影响、经济价值与象征意义的一项体育运动。在中国,登山起源于远古先民“山岳有灵”观念下的为祭祀而登的祭山传统,此后又发展出为获得审美体验而登、为修行而登、为休闲娱乐而登的各种登山形态。近代面对新的变局,中国登山积极吸收西方现代登山运动发展成果,融入时代潮流,衍生出了为救国而登、为育人而登、为文明而登的新形式。新中国成立后,在建国初期、改革开放时期和后奥运时代,登山又以为“站起来”而登、
量子纠缠是量子物理区别于经典物理的重要特征,它体现了量子世界的非局域性。随着量子信息处理技术和量子通信技术的逐步发展和完善,纠缠作为一种核心资源已经越来越引起人们的重视。许多利用经典手段无法完成的任务,如量子隐形传态、量子密集编码、量子纠错和量子计算等,借助于量子纠缠都能够实现。但在执行真实量子任务的过程中,任何储存纠缠的实际物理载体都不可避免地与周边的环境相互作用,这将导致局域退相干并最终摧毁整
非线性泛函分析是现代数学中一个既有深刻理论意义又有广泛应用价值的研究方向.它以数学和自然科学各个领域中出现的非线性问题为背景,建立处理许多非线性问题的若干一般性理论和方法,因而能很好的解释各种自然现象,它的丰富理论和先进方法为解决当今科技领域中层出不穷的非线性问题提供了富有成效的理论工具.目前非线性泛函分析的主要内容包括拓扑度理论、临界点理论、半序方法、解析方法和单调映射理论等,由于非线性问题理论
2004年,英国曼彻斯特大学的Geim和Novoselov以石墨为材料,通过机械剥离法获得了单分子层材料—石墨烯,这一创举在当时轰动了全世界,它的成功让人们重新认识到二维材料是可以单独、稳定存在的。获得的单分子层材料—石墨烯不仅改变了人类的认知,同时由于其独特的力学性质、热学性质、磁学性质和电学性质等,让石墨烯成为当下纳米科技材料的研究首选,吸引了众多者来研究石墨烯及它的衍生材料。2010年,Ge
本篇论文主要利用变分方法结合临界点理论研究边值问题解的存在性和多解性.本文共分四章.第一章简要介绍了利用变分方法研究微分方程的历史、研究现状以及一些基本定义和定理.第二章研究两类微分方程边值问题经典解的存在性和多解性.首先在经典的Ambrosetti-Rabinowitz条件下研究了一类二阶脉冲微分方程边值问题解的存在性和多解性,然后在泛函满足Cerami条件时研究了一类二阶脉冲微分方程边值问题解
本文的目的是在半序理论的基础上,利用非线性泛函分析方法研究Banach空间中算子不动点理论及非线性常微分方程边值问题正解的存在性.并得到了一些的新成果.根据内容本文分为以下四章:第一章绪论,主要叙述了Banach空间中非线性算子不动点理论与常微分方程边值问题的历史背景和发展,及本文的主要工作.第二章主要对三类非线性减算子不动点定理及其应用进行了研究.第一节利用著名的Schauder不动点定理,得到
非线性泛函分析是现代数学中一个既有深刻理论意义又有广泛应用价值的研究方向.它以数学和自然科学各个领域中出现的非线性问题为背景,建立处理许多非线性问题的若干一般性理论和方法.它的研究成果可以广泛应用于各种非线性微分方程、积分方程和其他各种类型的方程,以及计算数学、控制理论、最优化理论、动力系统、经济数学等许多领域.目前非线性泛函分析主要内容包括拓扑度理论、临界点理论、半序方法、解析方法和单调型映射理
排序论是组合最优化领域的一个重要研究方向.它有着广泛的应用背景和深刻的理论意义,常常应用于军事、经济、运输、管理和计算机科学等诸多领域.工件的加工和配送协作排序问题起源于大型工业车床加工领域,在物流和供应链管理领域都有着重要的实际背景,研究成果也非常丰富.分批排序、工件加工时间具有学习效应、工件属于一些不相容的组(famly)及工件的配送过程外包的排序问题都是比较新型的模型,也吸引了众多国内外学者
本文利用锥理论,不动点理论,Krasnoselskii不动点定理、上下解方法等研究了几类奇异微分方程半正边值问题和积分边值问题解的存在性和唯一性等情况,同时建立了混合单调算子的一些新的不动点定理.通过深入的研究,在较弱的条件下获得了一些新的有趣的成果.全文分为四章.第一章,我们主要介绍了非线性泛函分析的历史背景和一些基本概念.第二章,我们建立了混合单调算子的一个新的不动点定理及几个有用的推论,并给